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Abstract—
Tunneling Field-Effect Transistors (TFETs) attain much

higher energy efficiency than CMOS at low voltages. However,
their performance saturates at high voltages and, therefore,
cannot replace CMOS when high performance is needed.
Ideally, we desire a core that is as energy-efficient as a TFET
core and provides as much performance as a CMOS core.

To approach this goal, this paper judiciously integrates both
TFET units and CMOS units in a single core, effectively
creating a hetero-device core. We call it HetCore, and present
CPU and GPU versions. In HetCore, TFETs are used in
units that consume high power under CMOS, are amenable to
pipelining or are not very latency sensitive, and use a sizable
area. HetCore powers CMOS and TFET units at different
voltage levels, so they operate optimally. However, all units
are clocked at the same frequency. Our results based on
simulations running standard applications show the potential of
this approach, even with conservative assumptions. A HetCore
CPU consumes on average 39% less energy than a CMOS CPU,
while delivering an average performance that is within 10%
of the CMOS CPU. In addition, under a fixed power budget,
a multicore with HetCore CPUs can employ twice as many
cores as a multicore with CMOS CPUs, resulting in average
performance gains of 32% while, at the same time, improving
the energy efficiency (ED2) by an average of 68%. Similar
results are obtained with HetCore GPUs.

Keywords-TFET; Hybrid TFET-CMOS architecture; Core
architecture; CPU; GPU.

I. INTRODUCTION

In pursuit of higher energy efficiency, researchers try to
lower the operating voltage of CMOS transistors. Unfor-
tunately, CMOS is, intrinsically, a poor switch [1]. If one
reduces the threshold voltage as the supply voltage goes
down, leakage power soars, negating the energy savings.

Steep slope (SS) devices are a class of devices that are
much better switches [1]. They can turn-off a transistor hard
with a small decrease in the voltage applied. This makes these
devices attractive when operated at low voltage: they both
consume low dynamic energy while working, and leak little.
Among the various SS devices being explored, Tunneling
Field-Effect Transistors (TFETs) [2] are one of the most
promising [3], thanks to manufacturing feasibility and ability
to integrate with current FinFET CMOS devices.

While TFETs operate efficiently at low voltage, they do
not scale well with increasing voltage. Their performance
saturates beyond a certain voltage. Hence, they cannot
replace CMOS transistors when high performance is needed.
Instead, the best course to execute workloads with both high
performance and high energy efficiency may be to combine
CMOS and TFET transistors.

CMOS and TFET devices can be integrated in the same
chip [4], [5], [6], [7]. Circuits with a combination of CMOS
and TFET transistors have been used to build SRAM cells [8],
[9], voltage reference circuits [10], level converters [11],
multiplexers [12], 32-bit adders [12], power management cir-
cuits [13], analog circuits [14], and benchmark circuits [15].

Integration at such fine granularity provides an opportunity
for system designers to explore novel architectures. Prior
work has proposed a heterogeneous multicore with some
CMOS cores and some TFET cores [16], [17], [18]. The
authors migrate threads across the cores to attain most
efficient executions. This is an exciting approach, although it
is limited in that a given core delivers either high performance
or energy efficiency, but not both.

In this paper, our goal is to go one step further and design
a core that, ideally, is as energy-efficient as a TFET core, and
provides as much performance as a CMOS core. For this,
we judiciously integrate both TFET units and CMOS units
in the same core, effectively creating a hetero-device core.
We call it HetCore, and present CPU and GPU versions.

At their optimal operating voltage levels, TFET structures
switch at half the speed of CMOS ones, but consume about
8x lower power. This high-level tradeoff provides guidance to
select the TFET and CMOS units. TFETs should be used in
units that consume high power under CMOS, are amenable to
pipelining or are not very latency sensitive, and use enough
area to amortize the additional design effort.

HetCore powers CMOS and TFET units at different voltage
levels, so they operate at optimal conditions. However, all
units are clocked at the same frequency. To make this feasible,
HetCore reduces the work done by each TFET pipeline stage,
effectively giving to a TFET unit more pipeline stages than
an equivalent CMOS unit would have.

In this paper, we start by proposing a simple HetCore
design called BaseHet. While BaseHet reduces energy
consumption substantially, it is slow. Hence, we improve
it by adapting a few known micro-architecture optimizations,
enabled by the presence of the TFET units. The result is the
better-tuned AdvHet design.

Our results based on simulations running standard ap-
plications show the potential of this approach, even with
conservative assumptions. An AdvHet CPU consumes on
average 39% less energy than a CMOS CPU, while delivering
a performance that is on average within 10% of the CMOS
CPU. Further, under a fixed power budget, a multicore with
AdvHet CPUs can employ twice as many cores as a multicore
with CMOS CPUs, resulting in average performance gains of



32% while, at the same time, improving the energy efficiency
(ED2) by an average of 68%. Similarly, an AdvHet GPU
consumes on average 40% less energy and performs on
average within 20% of a CMOS GPU. Under a fixed power
budget, an AdvHet GPU, with twice as many compute units
as a CMOS GPU, improves average performance by 30%
while reducing ED2 by an average of 60%.

The alternative of simply using high-Vt CMOS transistors
in the units that are candidates for TFET implementation
is not as good a design. The reason is that high-Vt CMOS
transistors consume higher dynamic energy and leak more
than TFET transistors. In addition, applying the HetCore
micro-architecture optimizations to a CMOS core is of little
benefit. The reason is that such core is already highly tuned
without the optimizations.

Overall, the contributions of this paper are:
• The concept of a hetero-device TFET-CMOS core architec-
ture for high performance and energy efficiency (HetCore).
• The design of the AdvHet core for CPUs and GPUs, which
judiciously integrates CMOS and TFET units, and customizes
known micro-architecture optimizations.
• An evaluation of BaseHet and AdvHet.

II. BACKGROUND

A. Tunneling Field-Effect Transistors (TFETs)

To improve energy efficiency substantially, we need devices
that can operate at low voltage (Vdd), and that can switch
between ON and OFF conditions with little Vdd changes.
Ideally, the ON and OFF currents of a device should be
separated by four orders of magnitude. Conventional CMOS
transistors are inherently limited to needing 60mV to increase
the current tenfold — i.e., they need at least a change of
240mV to go from OFF to ON conditions.

The class of devices that have a slope higher than
60mV per decade are called Steep sub-threshold Slope (SS)
devices. Among the various SS devices being explored,
Tunneling Field-Effect Transistors (TFETs) are one of the
most promising [1], [2], [3], [19]. They consume low power
and have a steep slope. Moreover, they are the closest to
being realized industrially, thanks to their manufacturability
and ability to integrate with current FinFET-based CMOS
devices.

TFETs’ steep slope is the result of electron flow being
facilitated through a band-to-band tunneling process, as
opposed to through a transport channel like in MOSFETs.
The materials used in TFETs range from the usual Group IV
elements like Si and Ge, to Group III-V materials like InAs,
GaSb, InGaAs, and AlGaSb [1]. Various TFET devices have
been proposed over the last decade that have successively
improved their characteristics.

TFETs are typically classified into HomoJunction TFET
(HomJTFET) and HeteroJunction TFET (HetJTFET), based
on the materials used for source and drain. A HomJTFET
uses the same materials for the source and the drain. However,

the ON current is low and, hence, this device exhibits low
performance. A HetJTFET uses a different material for the
source and the drain — e.g., GaSb for source and InAs for
drain. The materials are chosen to allow for a higher ON
current and an extremely low OFF current.

Figure 1 compares the I-V characteristics of a HetJTFET
and a MOSFET transistor. As we can see, HetJTFET has a
higher slope than MOSFET. HetJTFET performs better than
MOSFET at low Vdd, but stops scaling beyond ≈0.6V, when
the curve saturates. For higher Vdd, MOSFET performs better.
As a result, HetJTFET cannot be used as a replacement of
MOSFET for high-performance designs.
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Figure 1: ID-VG characteristics of N-HetJTFET and N-
MOSFET based on data from Intel [2].
B. CMOS-TFET Integration

The structure of HomJTFET is very similar to that of a
CMOS FinFET. Hence, it is possible to manufacture both of
them using the same fabrication process with minor changes.
For example, Huang et al. [20] have recently fabricated
Complementary HomJTFET (C-TFET) devices in a standard
CMOS foundry, showcasing the readiness for high-volume
production and, from an architect’s perspective, the feasibility
of a hybrid CMOS-TFET system.

There has also been extensive work on fabricating Het-
JTFET on standard CMOS foundries. For example, InAs-Si
HetJTFETs have been fabricated on a silicon substrate [6],
[7]. The compatibility of CMOS and TFET process flows has
been shown by a number of groups, both through simulation
and through fabrication [4], [5], [10], [21]. Recently, mixed
MOSFET-HetJTFET SRAM cells and corresponding design
layout rules to integrate them at device level have been
proposed [8], [9]. Moreover, circuits with a combination of
CMOS and HetJTFET transistors have been used to build
level converters [11], multiplexers [12], 32-bit adders [12],
power management circuits [13], and analog circuits [14].
There is also substantial ongoing research on improving
HetJTFET performance and building complementary de-
vices [22], [23], [24], [25].

C. System Architectures with CMOS and TFET

Integration at such fine granularity provides an opportunity
for system designers to explore system architectures with
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Table I: Characteristics of CMOS and TFET technologies at 15nm, using data from [3], [19].
Parameter Si-CMOS HetJTFET InAs-CMOS HomJTFET

Supply voltage (V) 0.73 0.40 0.30 0.20
Transistor switching delay (ps) 0.41 0.79 3.80 6.68

Performance Interconnect delay per transistor length (ps) 0.18 0.42 2.50 3.60
32bit ALU delay (ps) 939 1881 9327 15990
Transistor switching energy (aJ) 32.71 7.86 3.62 1.96

Energy Interconnect energy per transistor length (aJ) 10.08 3.03 1.70 0.76
32bit ALU dynamic energy (fJ) 170.1 43.4 20.5 10.8

Power 32bit ALU leakage power (uW ) 90.2 0.30 0.14 1.44
ALU power density (W/cm2) 50.4 5.1 0.6 0.2

CMOS and TFET. Past work has proposed a heterogeneous
multicore with some CMOS cores and some TFET cores [16],
[17], [18]. A core provides either high performance or energy
efficiency, but not both at the same time. The authors propose
various techniques to manage the migration of threads across
the different types of cores. In our paper, we go beyond in
that we judiciously integrate both TFET units and CMOS
units in the same core, effectively creating hetero-device
CPUs and GPUs.

III. ARCHITECTURE IMPLICATIONS

CMOS remains the choice for high-performance systems,
while operating at high Vdd. However, at low Vdd, the
performance and energy efficiency of TFET far exceed those
of CMOS. To aid in the analysis, Table I compares the
performance, energy, and power of four types of devices at
15nm: Silicon CMOS (Si-CMOS), HetJTFET, HomJTFET,
and InAs-CMOS. The latter is a futuristic MOSFET built
out of InAs (a Group III-V material) that can operate at low
Vdd. InAs-CMOS would use the same approach as TFET
to integrate with Si-CMOS. In HomJTFET, the source and
drain use InAs, while in HetJTFET, they use GaSb and InAs,
respectively. The table compares each device at its most cost-
effective Vdd: 0.73V for Si-CMOS, 0.40V for HetJTFET,
0.30V for InAs-CMOS, and 0.20V for HomJTFET. The
data is obtained from Nikonov and Young [3], [19]. Similar
numbers have been reported elsewhere [16], [26].

A. Performance

Row 2 of Table I shows that the switching delay of a
HetJTFET, InAs-CMOS, and HomJTFET transistor is about
2x, 10x, and 16x longer, respectively, than the switching delay
of a Si-CMOS one. The next row compares the interconnect
delay for a distance equal to the transistor length. Since the
dimensions of MOSFET and TFET transistors are similar,
these delays are directly comparable. These delays follow
similar trends as the transistor switching delays. Finally, Row
4 shows the delay of a 32bit ALU operation, which includes
both transistor switching and interconnect delay. We can see
that the ratios are about the same as for the transistor delays.

Our goal is to implement some of the units in a Si-CMOS
CPU or GPU core in TFET technology. Mixing Si-CMOS
and HetJTFET units in the core is feasible, as a 2x differential

speed can be handled by keeping a single frequency, but
pipelining the HetJTFET unit at least twice as deeper. An
example can be an HetJTFET functional unit in a CMOS core.
However, including InAs-CMOS or HomJTFET units would
be too challenging: their speed differential would require
unrealistic 10x and 16x deeper pipelines, which would be
too disruptive. HomJTFET and InAs-CMOS are better suited
for ultra-low power applications in wearables or IoT devices.
Note also that, since Si-CMOS and HetJTFET operate at
different Vdd, we need level converters when we go from a
HetJTFET to a Si-CMOS unit. These level converters can
be integrated with pipeline latches [27].

B. Energy and Power

Rows 5 and 6 of Table I show the switching energy of a
transistor, and the interconnect energy for a distance equal
to the transistor length for all the technologies. The next row
shows the dynamic energy of a 32bit ALU operation, which
includes both transistor switching and interconnect energy.
We see that a Si-CMOS 32bit ALU operation consumes
about 4x, 8x, and 16x as much energy as with HetJTFET,
InAs-CMOS, and HomJTFET, respectively. Since HetJTFET
is 2x slower than Si-CMOS, the operation with HetJTFET
consumes about 8x less power.

Overheads like separate voltage rails for CMOS and TFET
units, and timing guardbands reduce the power savings of
TFETs. Our conservative estimate of overheads (Section V-B)
shows that HetJTFET still consumes 6.1x lower power than
Si-CMOS. However, in this paper, we impose even stricter
guardbands, and evaluate TFETs conservatively assuming
that they provide only a 4x power savings over CMOS.

The best property of HetJTFET transistors is their low
leakage power. Row 8 shows the leakage power of a 32bit
ALU. A HetJTFET ALU consumes about 300x lower leakage
power than a Si-CMOS ALU. In practice, the reduction is
not so high. This is because, in CMOS processors, many
logic structures not in the critical path use high-Vt CMOS
transistors to reduce leakage. For example, commercial
processors like AMD Ryzen [28] and prior designs [29]
contain about 60% high-Vt transistors. Such transistors
consume about the same dynamic energy as the regular-
Vt CMOS transistors assumed in Table I. However, they
consume less leakage power.
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Specifically, using a Synopsis library for 28/32nm technol-
ogy, we find that they consume 25-30x less leakage power
than regular-Vt transistors. This is in line with numbers
reported in prior work [29], [30]. Using these numbers, the
leakage power of a typical Si-CMOS unit is only about 42%
of the value in Table I. This agrees with dual-Vt designs of
both logic and SRAM cells in the literature [31], [32], [33],
[34]. Overall, using this figure, a HetJTFET ALU consumes
125x lower leakage power than a dual-Vt Si-CMOS ALU.

6T and 8T HetJTFET-based SRAM cells have been
proposed by some authors [35], [36], [37]. They show that
the leakage power of these cells is several hundred times
lower than a competitive Si-CMOS SRAM cell [35].

Overall, HetJTFET units provide over two orders of
magnitude savings in leakage power compared to Si-CMOS.
In the worst case, when 100% of the Si-CMOS transistors are
high-Vt, the savings reduce to a still sizable 10x. Therefore,
we will use HetJTFET devices in logic and memory structures
of the core where leakage power dominates.

Finally, row 9 shows the power density of an ALU. A
Si-CMOS design has a 10x higher power density than a
HetJTFET design. This indicates that HetJTFETs will be a
better choice for units that need high computational density,
such as SIMD FPUs.

C. Activity Factor

Because of their low leakage power, HetJTFETs are a good
choice for units that have a low activity factor. When there
is no activity, the HetJTFET implementation consumes very
little, while the Si-CMOS one still consumes a large leakage
power. In such a unit, the ratio of power consumed by the Si-
CMOS implementation over the HetJTFET implementation
keeps increasing the lower the activity factor is.

Figure 2 which depicts the total 32bit ALU power of
both designs and the ratio of powers, as the activity factor
decreases. An activity factor of 1 means that the ALU is used
every cycle. In the figure, the Si-CMOS ALU is composed
of 60% high-Vt transistors in noncritical paths to minimize
leakage. We see that, as activity decreases, the HetJTFET
implementation becomes relatively more attractive.
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Figure 2: Total power consumption of a Si-CMOS ALU and
a HetJTFET ALU with varying activity factors.

D. Dynamic Voltage-Frequency Scaling (DVFS)

We envision a core with two Vdd, one for the Si-CMOS
units (V 0

CMOS), and one for the HetJTFET units (V 0
TFET ).

All units are clocked at a single frequency (f0). To make
this possible, we reduce the work that each TFET pipeline
stage does, giving at least twice as many pipeline stages to
the TFET unit as a CMOS unit would have.

We also envision the ability to apply DVFS. When higher
performance needed, both Si-CMOS and HetJTFET units
increase their Vdd; when more energy efficiency is needed,
both decrease their Vdd. This means that we need to find
pairs of voltages (V i

CMOS , V i
TFET ) such that the Si-CMOS

circuit is always 2x faster than the HetJTFET circuit to do
equivalent work. From the previous discussion, these pairs
are such that, if V i

CMOS attains f i, then we need a V i
TFET

that would attain f i/2 to do the same work per pipeline
stage for the HetJTFET units.

One challenge is that each technology has a different Vdd-
frequency curve, with a different slope and a different range.
These curves are shown in Figure 3. We generated the Si-
CMOS curve from [38], and the HetJTFET curve from [2].
In the curves, we show V 0

CMOS=0.73V, V 0
TFET =0.40, and

f0=2GHz.
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Figure 3: Vdd-freq. curves for Si-CMOS and HetJTFET.

If we want to increase Si-CMOS’s Vdd by ∆V i
CMOS to

attain f i, we need to increase HetJTFET’s Vdd by an amount
∆V i

TFET that is different than ∆V i
CMOS . It is an amount that

can deliver f i/2 for the HetJTFET units to do the same work
per pipeline stage. Given that the slope of the HetJTFET
curve is less steep, ∆V i

TFET will typically be larger than
∆V i

CMOS . For example, to turbo-boost to a f1=2.5GHz, we
need ∆V 1

CMOS=75mV and ∆V 1
TFET =90mV.

E. Process Variation

The main source of variation in both TFET and MOSFETs
is the work function [39]. The extent of work function
variation in TFETs and MOSFETs is similar, both in logic
and SRAM [36], [39]. While the variation affects both Ioff
and Ion, the impact is higher on Ioff for TFET, and Ion for
CMOS. This is due to the steeper slope of the I-V curve
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(Figure 1) close to the OFF state in TFETs, and in the ON
state in CMOS.

As indicated by Avci et al. [39], the performance of the
transistors lost to variation can be reclaimed by increasing the
Vdd of both Si-CMOS and HetJTFET. We show in Section VII
that the result is that HetJTFET loses a small fraction of its
energy savings relative to Si-CMOS.

F. Area Consumption

A HetJTFET transistor has dimensions similar to a Si-
CMOS transistor. Further, the contacted gate pitch, and the
pitch of the two lowest metal layers (MP0 and MP1) are
the same in both CMOS and TFET devices [40]. The fact
that HetJTFETs have asymmetric source and drain materials
does impose some layout constraints when placing transistors
close to each other. However, a recent study [40] compares
the area of standard library cells of vertical HetJTFETs to
FinFETs and finds that, for the technology node of 15nm
considered in this paper, the areas are similar. For older
technology nodes, the HetJTFET implementations occupy
more area than the FinFET ones, while for future, smaller
technology nodes, it is expected that HetJTFETs will have
an area advantage over FinFETs.

IV. HETCORE ARCHITECTURE

Our goal is to design a hetero-device core architecture
that integrates CMOS and TFET devices, and that, ideally, is
as energy efficient as a TFET implementation and provides
the performance of a CMOS implementation. We call the
architecture HetCore, and provide CPU and GPU designs.

A. Main Idea

HetCore takes a high-performance CMOS CPU and GPU,
and selectively replaces some units with TFET implemen-
tations. The TFET units are supplied a Vdd (VTFET ) that
is lower than that of the CMOS units (VCMOS). The TFET
units are slower than the CMOS units. This is because TFET
devices take about 2x longer to switch than CMOS devices.

HetCore clocks the TFET units at the same frequency as
the CMOS units. This is made possible by reducing the work
that each TFET pipeline stage does, and at least doubling the
number of pipeline stages of the operation. Keeping a single
frequency domain in the core reduces the complexity of the
design, and eliminates any associated clock synchronization
overheads. Overall, through careful selection of TFET units,
we substantially reduce the energy consumption of the CPU
and GPU. However, we suffer performance degradation. We
name this design BaseHet.

Since BaseHet is slow, we then introduce mitigation
techniques to recover some of the performance lost. These
mitigation techniques are enabled by one of two effects.
First, the slowdown caused by TFET structures presents new
opportunities for micro-architectural optimization. Second,

TFET structures present different power-performance trade-
offs than CMOS ones and, hence, require re-evaluation of
certain design decisions. We call this final design AdvHet.

B. BaseHet Design

An ideal unit to replace with a TFET implementation has
the following traits:
• Is Highly Power Consuming. The power consumed by the
CMOS variant should be significant compared to the total
power of the CPU or GPU. Otherwise, any savings will be
small — or even negative, due to the program slowdown.
• Is Amenable to Pipelining and/or is Not Very Latency-
Sensitive. The longer latency induced by TFET devices should
not hurt the overall performance too much.
• Uses a Large Area. To amortize the design effort, it is
preferable that the unit be relatively large. We impose this
constraint for BaseHet, and later relax it slightly for AdvHet.

We now discuss the candidate units in a CPU and GPU.
They are shown in Figure 4.
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Figure 4: TFET-based units selected for the BaseHet design.

1) Floating-Point Units in the CPU and GPU: Floating-
Point Units (FPUs) in both the CPU and the GPU (SIMD
FMA units) are power hungry. They are also pipelined for
multiply and add operations. While divide and a few other
complex operations are not typically pipelined in the CPU,
such operations are less common in most applications. In
addition, floating-point intensive applications are known to ex-
hibit high Instruction Level Parallelism (ILP). Hence, deeper-
pipelined FPUs can still attain high levels of occupancy. As
a result, moving to TFET FPUs, and making their pipeline
deeper should have modest impact on performance. In case of
a SIMD FMA unit in the GPU, due to the inherent throughput-
oriented nature of the programs, it is even easier to fill the
pipeline with other threads and minimize the performance
impact. The FPUs, therefore, are ideal candidates for moving
to a TFET design.

2) ALUs in the CPU: The ALUs in a CPU core consume
substantial dynamic power and can be pipelined. The more
complicated ALU operations such as multiply and divide
are usually pipelined. Pipelining an ALU, however, will
have a negative impact on the performance, especially in
the case of branch mispredictions. Despite the slowdown
caused, pipelined ALU designs have been employed in
commercial microprocessors since Alpha 21064 to reach
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high frequencies. Therefore, even though pipelining the ALUs
has a performance impact, as we show in our evaluation,
the energy savings of implementing the ALUs in TFET is
attractive.

3) Caches in the CPU: Caches contribute the majority
of the leakage power consumption in a CPU. Since TFETs
leak very little, even compared to high-Vt transistors, caches
are excellent candidates to move to TFET. Out of the three
levels of caches in a modern hierarchy, the latency of L3 has
the least impact on performance. Hence, L3 can definitely
be implemented in TFET. The latency of L2 has impact
on some programs, but it is limited. Note that out of an
8-10 cycle round trip to L2, only 3-5 cycles are actually
spent accessing L2. Therefore, by moving to a TFET L2, the
additional latency of L2 access is only 3-5 cycles.

In the case of L1, an increase in access latency clearly
causes performance degradation. This is especially true for
the instruction cache (IL1). Any latency increase of the data
cache (DL1) is unwanted as well, but it can be hidden partially
in an out-of-order core with enough ILP. The cache accesses
are pipelined and may be distributed among multiple banks,
allowing multiple accesses to proceed in parallel. Finally,
both leakage and dynamic power consumption in DL1 are
significant. Hence, even though we induce a performance
loss, we move DL1 to TFET.

4) Register File in the GPU: The Register File (RF) in
a GPU is big and consumes significant power (up to 10%
of the GPU power [41]). RF access can also be pipelined
by partitioning it into multiple stages, such as data array
access and source drive [42]. The additional latency increase
results in a performance degradation, which may be hidden
in throughput-oriented workloads. Hence, the RF in GPUs
is also a good candidate for implementation in TFETs.

C. AdvHet Design

BaseHet improves the energy efficiency over a pure-
CMOS design at a performance cost. In AdvHet, we adapt
known performance-improvement techniques to BaseHet and
recover most of the performance lost. BaseHet exposes an
opportunity for such techniques by changing the balanced
power/performance design of the baseline CMOS. First,
the slowdown due to the TFET units provides avenues
for previously-suboptimal micro-architectural design choices.
Second, equipped with the lower power consumption of TFET
units, a small power penalty might now be a good tradeoff
for a big performance gain. This may sometimes result in
overall energy savings as well, due to the corresponding
reduction in leakage energy.

1) Asymmetric DL1 Cache: The DL1 cache access latency
is critical to the performance of most applications. By using a
TFET DL1, BaseHet doubles the round trip to 4 cycles from
2 cycles in baseline. We present the design of an Asymmetric
Cache (Figure 5) to alleviate some of the latency penalty
introduced by TFETs.
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Figure 5: Schematic design of an Asymmetric Cache.

The goal of the asymmetric cache is to reduce the hit
latency. To accomplish this, the asymmetric cache partitions
the ways in an associative cache. One way is implemented
in CMOS (FastCache), and the rest of the ways in TFET
(SlowCache). A request from the processor checks the
FastCache first. A hit is satisfied in 1 cycle. A miss sends
the request to the SlowCache, where a hit takes 4 additional
cycles. Hence, the hit latency is either 1 cycle (for FastCache
hits) or 5 cycles (for SlowCache hits). Such a tradeoff is
attractive in AdvHet because, otherwise, all hits would take 4
cycles. However, it is not as attractive in the baseline CMOS
where hits take 2 cycles.

The Most Recently Used (MRU) line from each set
is moved to the FastCache to improve the hit rate. The
FastCache is partitioned into two banks with two read/write
ports to facilitate the data transfer between FastCache and
SlowCache. CACTI [43] analysis shows that the access
latency of the FastCache is about one third of the base
32KB DL1.

The access energy of the FastCache is small. On average,
this approach of accessing the FastCache first and, potentially,
then accessing the SlowCache, and even moving a line
between caches saves energy over accessing a whole CMOS
DL1, or accessing a whole TFET DL1. In fact, prior work has
looked at using similar cache designs for energy reduction
[44], [45], [46]. Overall, compared to a whole TFET DL1,
the asymmetric cache improves performance and reduces
energy consumption over the whole program execution.

2) Dual-Speed ALU Cluster: Increasing the latency of an
ALU degrades the overall performance. Notably, it prevents
the back-to-back issue of dependent instructions, and also
increases the branch misprediction penalty. We mitigate the
impact of the first issue by keeping one of four ALUs in the
core implemented in CMOS, hence creating a dual-speed
ALU cluster. By identifying appropriate producer-consumer
instructions and executing them on the CMOS ALU, we
enable back-to-back issue of these instructions.

The algorithm to identify such producer-consumer in-
structions in AdvHet has the following objectives. First,
it minimizes the situations where back-to-back dependent
instructions are sent to a TFET ALU. Second, it maximizes
the power savings by steering the majority of the instructions
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to a TFET ALU. Finally, it balances the overall utilization of
the TFET ALUs and the CMOS ALU. Note that the penalty
of mis-steering is only to increase the latency of an ALU
operation from 1 to 2 cycles. Due to this reason, the objective
of our scheme is different from some of the prior work on
identifying the most critical path [47]. A simple algorithm
suffices for us.

Dual-speed clusters have been studied previously as a
mechanism to reduce power consumption [48], [49], [50]. In
our design, we employ a simplified version of the Generation
Time Gap metric [49] for steering instructions to slow and
fast clusters. Specifically, for each instruction in the dispatch
stage, we check if any consumer is present in a small window
of instructions behind the current one. As the additional
latency of a TFET ALU over a CMOS ALU is one cycle,
we set the window length as the number of instructions that
can be issued in one cycle — i.e., the core’s issue width.
Intuitively, if a consumer exists in this small window, then
executing the current instruction on the CMOS ALU may
benefit the consumer. Note that in an out-of-order machine,
this is not a necessary condition, and we may mis-steer
occasionally. Such scenario could be avoided by performing
the check in the issue stage. However, doing so would
interfere with the issue process and add to the complexity
of the issue stage. Hence, steering is best performed in the
dispatch stage, in parallel to its current functionality. This
minimizes the additional complexity.

3) Register File Cache in the GPU: Register file access
is in the critical path of an arithmetic operation in a GPU. In
throughput-oriented workloads, the compiler could customize
the binary to hide the additional latency of accessing a
TFET register file. However, this would likely not be enough.
Therefore, to reduce the access latency, we instead use a
register file cache, with 6 entries per thread. This is a very
small subset of the 256 registers per thread in the GPU that
we model (based on AMD’s Southern Islands). The access
latency of this small cache is only one cycle.

To maximize the utility of this register file cache and
avoid thrashing, we only cache registers that we write. This
is because as much as 40% of the writes are consumed by
reads within a few instructions [42]. Hence, caching only
the writes provides good locality for reads and minimizes
thrashing. In our simulations, we observe that this cache is
able to recover up to 70% of the performance loss caused
by the increase in the register file access latency.

The register file cache was originally proposed to reduce
the power consumption of GPUs [42]. In AdvHet, however,
we also reap the benefits of a faster register access enabled
by such cache. The opportunity for reducing latency is much
higher in HetCore than in a CMOS design, in a manner
similar to the asymmetric cache.

4) Discussion: The deeper pipelining of the FPUs in
BaseHet unbalances the core pipeline. To keep such deeper-
pipelined FPUs utilized, we need to sustain more inflight

instructions. Hence, we increase the sizes of the FP register
file and ROB appropriately. Note that a larger ROB size will
also aid in some non FP-intensive applications.

Other optimizations are possible, but we do not consider
them due to questionable tradeoffs. For example, there are
FPU designs that reduce latency but increase area and/or
power [51]. This includes different encoding schemes (Booth
2 versus Booth 3), combining networks (Wallace tree versus
OS1), and multiplier types (CMA versus FMA). For example,
a CMA design would reduce the latency over an FMA unit
when forwarding the output to another multiply/add operation.
However, it would take up 15% more area and consume 20%
more power. One could also customize the GPU compiler
to hide some of the additional FPU latency. We leave the
analysis of these techniques to future work.

D. Summary of the Designs
Table II shows a summary of the design modifications for

HetCore. In the BaseHet design, we implement in TFET the
following structures: FPUs, ALUs, DL1, L2, and L3 in a
CPU; and SIMD FPUs and register file in a GPU. In the
AdvHet design, we additionally add the following structures:
the asymmetric DL1 cache, the dual-speed ALU cluster, and
a larger ROB and FP register file in a CPU; and the register
file cache in the GPU.

Table II: Design modifications for HetCore.
Design CPU Structures GPU Structures
BaseHet FPUs, ALUs, DL1, L2, and

L3 in TFET
SIMD FPUs and
RF in TFET

AdvHet BaseHet + asymmetric DL1
cache + dual-speed ALU +
larger ROB and FP RF

BaseHet + register
file cache

V. IMPLEMENTATION CONSIDERATIONS

A. Dual Voltage Rails and Level Converters
HetCore integrates CMOS and TFET units operating at

different Vdd inside a CPU and GPU. Hence, it requires
provisioning for separate Vdd rails for the two groups of units,
and level converters between such units. More specifically,
each pipeline stage is powered at a single Vdd. This is shown
in Figure 6, which shows two TFET stages in between two
CMOS stages. The former are powered with the lower VTFET,
while the latter with the higher VCMOS. A given stage includes
both data-path and control-path signals.

TFET 
Stage 2a

TFET
Stage 2b

CMOS
Stage 1 

VCMOS

VTFET

La
tc

h

La
tc

h CMOS
Stage 3La
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h 

w
/ 
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C
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Figure 6: HetCore dual voltage rail design.
Latches between two same-device stages are implemented

with the same device type. Latches between two different-
device stages are implemented in CMOS, and are powered at
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VCMOS. Additionally, those latches that connect a TFET stage
to a CMOS stage need to perform up-conversion. Hence, as
shown in Figure 6, they are augmented with a level converter
and take both Vdd levels [11], [27].

HetCore employs a level converter design based on Ishihara
et al. [27], which is implemented as part of a latch. This
design uses pulsed half-latch level converting flip-flops, which
are shown to be more efficient in terms of energy-delay
and area when compared to asynchronous level conversion.
Moreover, the level converter follows the hybrid CMOS-
TFET organization that has recently been proposed by
Lanuzza et al. [11].

The fact that the whole pipeline uses a single frequency
domain keeps the design simpler. There is no need to perform
synchronization across stages. The presence of multiple Vdd
domains requires careful design of the clock tree, but it has
been shown that such tree can be generated with very little
skew (<0.5% of the clock cyle) [52].

B. Overheads of the Multi-Vdd Substrate

The multi-Vdd substrate of HetCore introduces delay, area,
and power overheads. The first issue is the dual Vdd rails
themselves. Their main overheads are the additional area
they take, and the need to customize their layout/routing,
as automatic tools may not be able to handle them. One
implementation of dual rails [53] estimates the area cost to
be ≈5% of the core.

The second issue is the level converters. They require
carefully managing the clock skew and timing across Vdd
domains. Moreover, they add a few gates to the critical path
of the pipeline stage. Based on Ishihara et al.’s [27] work,
we estimate a delay impact of ≈5%. The additional area and
power of the level converters is negligible [27].

A third issue is the deeper pipelining of the TFET
structures. It introduces delay in two ways. First, the work
in a pipeline stage cannot usually be sliced into two equally-
sized portions; instead, one portion takes longer. We estimate
that this effect makes TFET stages ≈5% longer than ideal.
Second, TFET latches are themselves slower that CMOS ones.
Given that latches account for ≈10% of a stage’s latency [54],
we add one extra 10% stage delay due to slow TFET logic.
The latches added for the deeper pipelining also introduce a
power overhead of ≈10% of the stage power [54].

The fourth issue is that HetCore introduces design com-
plexity and verification costs, which are hard to quantify.

In summary, TFET stages in HetCore suffer from a delay
of up to 15% — resulting from 5% due to unequal work
partitioning between stages, and 10% due to a level converter
or a slow TFET latch (but not both). Since we do not want to
penalize the frequency of the pipeline, HetCore raises VTFET
slightly over its value in Table I, to meet CMOS timing
constraints. Specifically, to recover this 15% delay, VTFET is
increased by 40mV. As a result, the power consumption of
TFETs increases by 24%, which lowers the overall dynamic

power savings of moving from CMOS to TFET from 8×
to about 6.1×. Further, to be very conservative, in the rest
of the paper, we set the overall reduction in dynamic power
when moving from CMOS to TFET to be only 4x.

VI. EVALUATION SETUP

We evaluate HetCore using the Multi2Sim [55] architec-
tural simulator, which models CPUs and GPUs. We model a
processor with 4 CPUs and 1 GPU. Each CPU is 4-wide and
out of order. The GPU hardware is modeled after the AMD
Southern Islands, with 8 compute units. Table III shows
the detailed parameters of the modeled CPU and GPU. We
obtain the power numbers by using the HP-CMOS process
of McPAT [56] and GPUWattch [57] for the CPU and GPU,
respectively. Recall that TFET units now operate at a Vdd
of 0.440 V, and CMOS units at 0.730 V. At these voltages,
the frequency reached by all-CMOS and all-TFET CPUs is
2GHz and 1GHz, respectively. While the dynamic power
consumption of TFET units is 6.1x lower than HP-CMOS
ones, we conservatively use a 4x factor. Further, to calculate
the TFET leakage power, we conservatively assume that it
is only 10x lower than the CMOS leakage power, as if all
the CMOS transistors were high-Vt devices.

Table III: Parameters of the simulated architecture.
Parameter Value
CPU Hardware 4 out-of-order cores, 4-issue each, 2GHz
INT/FP RF; ROB 128/80 regs; 160 entries
Issue queue 64 entries
Ld-St queue 48 entries
Branch prediction Tournament: 2-level, 32-entry RAS, 4way 2K-entry BTB
Functional units:
4 ALU CMOS: 1 cycle, TFET: 2 cycles
2 Int Mult/Div CMOS: 2/4 cycles, TFET: 4/8 cycles
2 LSU 1 cycle
2 FPU CMOS: Add/Mult/Div 2/4/8 cycles; TFET: 4/8/16 cyles;

Add/Mult issue every cycle, Div issues every 8/16 cycles
Private I-Cache 32KB, 2way, 64B line, Round-trip (RT): 2 cycles
Asym. FastCache 4KB, 1way, writeback (WB), 64B line, RT: 1cycle
Private D-Cache 32KB, 8way, WB, 64B line, RT: 2cycles (CMOS) or

4cycles (TFET)
Private L2 256KB, 8way, WB, 64B line, RT: 8cycles (CMOS) or

12cycles (TFET)
Shared L3 Per core: 2MB, 16way, WB, 64B line, RT: 32cycles

(CMOS) or 40cycles (TFET)
DRAM latency RT: 50ns
GPU Hardware 8 CUs with 16 EUs each, 1GHz
FMA unit CMOS:3 cycles, TFET:6 cycles, pipelined issue every cycle
Vector registers 256 per thread, access: 1 cycle (CMOS) or 2 cycles (TFET)
Register file cache 6 entries per thread, access: 1 cycle
Network Ring with MESI directory-based protocol

In our evaluation, we use the 15nm process node for the
power and performance characteristics of TFET and CMOS.
This is because we can obtain reliable parameter data at
15nm technology, but not beyond 15nm. A high-level scaling
study of TFETs from 22nm to 10nm [16] shows that the
insights from Table I hold true at 10nm. CMOS is likely to
maintain a performance edge over TFET and, as a result, the
HetCore tradeoffs will remain similar.
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A. Configurations

Table IV shows the CPU and GPU configurations evaluated.
For the CPU, we evaluate 10 configurations. The baseline
is an all-CMOS core (BaseCMOS). In BaseCMOS, all
the caches use high-Vt transistors, and the core units
consist of 60% high-Vt transistors. Two other baselines
are BaseCMOS enhanced with the techniques of AdvHet in
CMOS (BaseCMOS-Enh), and an all-TFET core (BaseTFET).
Note that BaseTFET operates at 2x lower frequency and
consumes 8x less dynamic power than BaseCMOS. This is
much less dynamic power than HetCore, where TFET units
consume 4x less dynamic power than CMOS units.

Table IV: CPU and GPU configurations evaluated.
CPU Configurations Evaluated

Configuration Notes
BaseCMOS All-CMOS core
BaseCMOS-Enh BaseCMOS + Larger ROB(160→192) & FP-RF (80→128)

+ CMOS asymm. DL1 (1cycle for 1way & 3cycles for rest)
BaseTFET All-TFET core
BaseHet BaseCMOS + FPUs, ALUs, DL1, L2, and L3 in TFET
AdvHet BaseHet + Larger ROB(160→192) & FP-RF (80→128)

+ Dual speed ALU (3 ALUs in TFET & 1 ALU in CMOS)
+ Asymm. DL1 (1way CMOS & rest in TFET)

BaseL3 BaseCMOS + Larger ROB & FP-RF + L3 in TFET
BaseHighVt BaseCMOS + high-Vt in FPUs & ALUs. Latencies of

Add/Mul/Div are: Int 2/3/6 cycles & FP 3/6/12 cycles
BaseHet-FastALU BaseHet + all ALUs in CMOS
BaseHet-Enh BaseHet + Larger ROB & FP-RF
BaseHet-Split BaseHet-Enh + Dual speed ALU

GPU Configurations Evaluated
Configuration Notes
BaseCMOS All-CMOS core + Register file cache
BaseTFET All-TFET core
BaseHet BaseCMOS + SIMD FPUs & RF in TFET
AdvHet BaseHet + Register file cache

We compare these baselines to BaseHet and AdvHet. We
also evaluate several intermediate design points. BaseL3 is
BaseCMOS with the larger ROB and FP register file, and with
a TFET L3. BaseHighVt is BaseCMOS plus FPUs and ALUs
with only high-Vt transistors. These high-Vt devices have a
1.4-1.6x higher delay than regular-Vt ones [58]. The latencies
of the FPUs and ALUs are shown in Table IV. Cache latencies
remain the same. However, the leakage power of FPUs and
ALUs in BaseHighVt is 10x lower than in BaseCMOS.

Finally, other configurations include BaseHet with all the
ALUs in CMOS (BaseHet-FastALU), BaseHet with the larger
ROB and FP register file (BaseHet-Enh), and BaseHet-Enh
with the dual speed ALU cluster (BaseHet-Split).

For the GPU, we evaluate 4 configurations. The baseline is
an all-CMOS core with the register file cache (BaseCMOS).
We add the register file cache for fairness. We compare it
to an all-TFET core (BaseTFET) and our proposed BaseHet
and AdvHet designs.

B. Applications & Metrics

We use the SPLASH-2 and PARSEC applications to
evaluate the CPU designs. From SPLASH-2, we use Barnes
(16K particles), Cholesky (tk29.O), FFT (220), FMM (16K),

LU (512x512), Radiosity (batch), Radix (2M keys), Raytrace
(teapot.env), Water-Nsquared (random.in), and Water-Nspatial
(512). From PARSEC, we use Blackscholes(16K), Can-
neal(10000), Streamcluster (4K), and Fluidanimate(15K). For
the GPU evaluation, we use all the applications from the
AMD-SDK-APP suite provided along with the Multi2Sim
simulator, with the suggested input sizes [55]. Our metrics of
comparison are execution time, energy consumption, energy-
delay product (ED), and energy-delay-squared (ED2). Due
to space restrictions, we do not show the ED results.

VII. EVALUATION

A. HetCore CPU Evaluation

Figure 7 compares the execution time of BaseCMOS,
BaseCMOS-Enh, BaseTFET, BaseHet, and AdvHet running
our applications. The bars are normalized to BaseCMOS.
There is an extra bar (AdvHet-2X) that we discuss later.

On average, BaseHet experiences a slowdown of 40%.
This is mostly due to the increased latencies of the FPUs,
ALUs, and DL1. Applications that often hit in the DL1 suffer
the most, due to the higher access latency in BaseHet. The
deeper-pipelined FPU and ALU units also hurt BaseHet’s
performance. Overall, BaseHet is not a very good design.

The performance enhancement techniques used in AdvHet
prove effective, and recover most of the performance losses
in BaseHet. Specifically, AdvHet’s average execution time is
only 10% higher than that of BaseCMOS.

BaseTFET shows a large slowdown of 96%. This is
because its frequency is half of BaseCMOS’ frequency.
We also see that BaseCMOS-Enh does not improve over
BaseCMOS on average. This is because the pipeline changes
in BaseCMOS-Enh largely unbalance the already balanced
BaseCMOS design. These changes are only effective in
AdvHet, due to unbalanced nature of BaseHet.

Figure 8 shows the energy consumption of the same
configurations as Figure 7, broken down into the contributions
of core (including the L1s), L2, and L3, and separating the
dynamic and leakage energy. The bars are normalized to
BaseCMOS. We see that BaseTFET reduces the energy con-
sumption by 76%, thanks to the excellent energy efficiency
of TFETs. The HetCore designs also provide very good
energy savings over BaseCMOS. Specifically, BaseHet and
AdvHet reduce the energy by 35% and 39%, respectively.
The reductions come from both dynamic and leakage energy.

AdvHet saves slightly more energy than BaseHet for two
reasons. First, AdvHet is faster and, hence, has lower leakage.
Second, an access to the fast CMOS way of the asymmetric
DL1 cache in AdvHet consumes less dynamic energy than
an access to the TFET DL1 cache in BaseHet. Since a large
fraction of DL1 accesses in AdvHet hit in the fast CMOS
way, and never access the slow TFET ways, the overall
dynamic energy consumption is low. Overall, AdvHet is an
attractive design: it consumes on average 39% less energy
than BaseCMOS, while performing within 10% of it.
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Figure 9: ED2 of different CPU designs, normalized to BaseCMOS.

BaseCMOS-Enh has similar results as BaseCMOS.
Finally, Figure 9 compares the ED2 of all the designs.

Although BaseHet consumes less energy than BaseCMOS, it
has a worse average ED2 because it is slower. AdvHet has
the lowest ED2, because it is nearly as fast as BaseCMOS
and consumes much less energy. On average, its ED2 is 26%
lower than BaseCMOS, and 20% lower than BaseTFET.

1) Comparison Under a Constant Power Budget: AdvHet
is especially appealing when comparing chips at a constant
power budget. From Figures 8 and 7, one can deduce that an
AdvHet core consumes half the power of a BaseCMOS one.
Hence, under the same power budget, we can power twice
as many AdvHet cores as BaseCMOS ones in the chip.

The last column (AdvHet-2X) in Figures 7, 8 and 9
corresponds to this design. AdvHet-2X executes with 8 cores,
with the same power budget as BaseCMOS with 4 cores. We
can see that AdvHet-2X reduces the average execution time
by 32% relative to BaseCMOS, while consuming 34% less
energy. The result is a large 68% average ED2 reduction.

Overall, combining CMOS and TFET in AdvHet delivers
a compelling solution for upcoming energy-constrained
environments. Workloads consume 39% less energy that
CMOS designs, while running only 10% slower. Moreover,
if they have substantial parallelism, they can execute much
more energy efficiently as well as faster than CMOS designs.

Note that BaseTFET is also able to employ more cores
within the same power budget. Specifically, it can power 7-8
times more cores than BaseCMOS. The result is an efficient
execution for very parallel workloads. However, with the
same thread count as BaseCMOS, BaseTFET runs at half
the BaseCMOS speed, which makes BaseTFET unattractive.

B. HetCore GPU Evaluation

For the GPU architecture, Figure 10 compares the execu-
tion time of BaseCMOS, BaseTFET, BaseHet, AdvHet, and
AdvHet-2X running our applications. The bars are normalized
to BaseCMOS. AdvHet-2X will be discussed later.

The execution time of BaseTFET is about twice that of
BaseCMOS, as BaseTFET runs at half the frequency. Among
the HetCore designs, BaseHet suffers an average performance
loss of 28%. This is due to the slower SIMD FMA unit
and register file. In AdvHet, we take BaseHet and add the
register file cache. With this support, AdvHet improves the
performance, but the average execution time is still 20%
higher than BaseCMOS.

This performance loss appears, mostly, because we do
not perform any compiler optimizations on the code to hide
some of the longer latencies of the SIMD FPUs and register
file. Such optimizations would help speed-up the programs,
especially those with short-distance dependencies. In reality,
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Figure 10: Execution time of different GPU designs, normalized to BaseCMOS.
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Figure 11: Energy consumption of different GPU designs, normalized to BaseCMOS.
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Figure 12: ED2 of different GPU designs, normalized to BaseCMOS.

however, since GPU workloads are throughput oriented, we
are more interested in the performance under a fixed power
budget. We consider this case in Section VII-B1.

Figure 11 shows the energy consumption of the same
configurations, broken down into dynamic and leakage energy
contributions. The bars are normalized to BaseCMOS. We
see that BaseTFET reduces the average energy consumption
by 75%. BaseHet and AdvHet are also effective, reducing
the average energy over BaseCMOS by 35% and 40%,
respectively. The reductions come from both dynamic and
leakage energy. The savings of AdvHet over BaseHet are due
to the hits in the register file cache. Recall that, for fairness,
BaseCMOS also includes the register file cache.

Finally, Figure 12 shows the ED2 of the different
configurations. While BaseHet consumes less energy than
BaseCMOS, it has a worse average ED2 because it is slower.
AdvHet, thanks to the register file cache, is able to reduce
the average ED2 by 9% over BaseCMOS.

1) Comparison Under a Constant Power Budget: The
interesting scenario for AdvHet GPUs is comparing against
BaseCMOS GPUs under a constant power budget. From
Figures 11 and 10, one can see that an AdvHet GPU
consumes half the power of a BaseCMOS one. Hence, we
compare the execution of the 8 compute units in BaseCMOS

to 16 compute units in AdvHet. We call the latter AdvHet-2X
in Figures 10, 11 and 12.

We see that, under AdvHet-2X, applications take on
average 30% less time to execute (Figure 10) and consume on
average 34% less energy (Figure 11) than under BaseCMOS.
Moreover, Figure 12 shows that AdvHet-2X’s ED2 is on
average 60% lower than that of BaseCMOS. Overall, AdvHet-
2X is an attractive design for a GPU.

C. Comparison to Alternative CPU Designs

Figure 13 compares the execution time, energy, ED, and
ED2 of BaseHet and AdvHet to several other CPU configu-
rations. Specifically, the figure includes three designs related
to the baseline (BaseCMOS, BaseL3, and BaseHighVt),
and three designs related to BaseHet (BaseHet-FastALU,
BaseHet-Enh, and BaseHet-Split). The bars are normalized
to BaseCMOS.

BaseL3 has a performance similar to BaseCMOS, and
saves leakage by using TFET devices in L3. Hence, it
reduces about 10% of the energy, ED and ED2 relative to
BaseCMOS. AdvHet is better than BaseL3 because it saves
40% of the energy, reducing ED and ED2 substantially.

BaseHighVt has FPUs and ALUs that use only high-Vt

transistors. The rest is like BaseCMOS, which uses 60%
high-Vt transistors in all the core units. Since the FPUs and
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Figure 13: Sensitivity analysis of HetCore CPU designs.

ALUs have slightly higher latencies (Table IV), BaseHighVt
is slightly slower than BaseCMOS. In addition, we see
that it consumes higher energy. This is because the leakage
energy saved by having high-Vt FPUs and ALUs does not
compensate for the increase in overall leakage energy due
to longer execution. Since BaseHighVt is less cost-effective
than BaseCMOS, it is also less cost-effective than AdvHet.

BaseHet-FastALU is BaseHet except that all its ALUs
use CMOS. Compared to BaseHet-FastALU, BaseHet is 2%
slower, but saves 10% of the energy. This tradeoff justifies
using TFETs in ALUs as in BaseHet.

BaseHet-Enh takes BaseHet and increases the sizes of
ROB and FP register file. This provides a marginal 3%
performance improvement at comparable energy. On top of
that, BaseHet-Split adds the dual-speed ALU cluster. This
provides another 2% speedup at similar energy. Finally, if
we add the asymmetric DL1 cache to BaseHet-Split, we
obtain AdvHet. Adding the asymmetric DL1 cache reduces
execution time by a substantial 17%, with marginal energy
reduction (Figure 13). This speed-up is due to the high hit
rate of the fast CMOS way of the asymmetric cache. Such
hit rate is only 5-20% lower than that of a whole 32KB DL1.

D. Impact of DVFS and Process Variation

As discussed in Section III-D, the Vdd-frequency curves
for TFET and CMOS devices around their operating points
are different. As a result, the energy consumption changes
due to DVFS are different in AdvHet and BaseCMOS. In
Figure 14, we show the energy consumed by BaseCMOS and
AdvHet as we increase/decrease the frequency by 500 MHz.
The figure shows bars for 2GHz (BaseFreq-2GHz), 2.5GHz
(BoostFreq-2.5GHz), and 1.5GHz (SlowFreq-1.5GHz). The
bars are normalized to the energy of BaseCMOS at 2GHz.

At 2GHz, AdvHet saves 39% of the BaseCMOS energy.
As we move to f=2.5GHz, AdvHet needs to increase the
voltages by ∆VCMOS=75mV and ∆VTFET =90mV. This
was shown in Figure 3. The larger increase in VTFET is
needed because of the shape of the curve. As a result of
the relatively higher ∆VTFET , AdvHet is relatively less
efficient and, as shown in Figure 14, only saves 36% of the
BaseCMOS energy.

If we move to f=1.5GHz, AdvHet changes the voltages
by ∆VCMOS= -70mV and ∆VTFET = -80mV. The larger

VTFET reduction makes AdvHet relatively more efficient,
and now saves 43% of the BaseCMOS energy.
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Figure 14: Impact of DVFS and process variation on the
energy consumed by BaseCMOS and AdvHet.

We also study the impact of process variation on the
energy consumption. According to Avci et al. [39], to protect
against all the potential sources of process variation at 15nm,
we need to add Vdd guardbands equal to ∆VCMOS=120mV
and ∆VTFET =70mV, for the respective operating voltages.
These are large guardbands. With these guardbands, the
energy consumed by BaseCMOS and AdvHet is shown in
the rightmost bars of Figure 14. We see that the energy
of both configurations goes up. Compared to BaseCMOS,
AdvHet now saves more energy in absolute terms, but slightly
less (37%) in relative terms.

VIII. RELATED WORK

Prior work has studied the integration of some TFET cores
and some CMOS cores in the same chip [17], as well as
in a 3D-stack [16]. HetCore pushes device heterogeneity
inside the core for a more energy-efficient design. In [18],
the authors proposed a barrier-aware thread migration scheme
to move threads from a TFET core to a CMOS core and
vice-versa to minimize the ED. We performed an iso-area
comparison with such barrier-aware thread migration scheme.
It can be shown that AdvHet provides, on average, higher
performance while consuming lower energy. This is because,
in [18], the threads on the TFET cores slow down the
program, while the threads on the CMOS cores consume
more power than in AdvHet.

Several researchers (e.g., [9], [11], [35], [36], [37]) have
developed TFET or mixed TFET-CMOS circuits, including
SRAM cells, that lay the groundwork for building TFET-
CMOS hybrid cores. We discussed such work in Sections II
and III.

The architectural techniques employed by AdvHet to
alleviate the performance penalties present in BaseHet
have been proposed and studied in prior work in other
contexts. Such techniques include designs similar to the
asymmetric data cache [44], [45], [46], dual-speed clusters
as a mechanism to reduce power consumption [48], [49],
[50], and register file caches for GPUs [42]. In this paper,
we adapt them to the context of heterogenous-device cores.
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As an alternative to using a register file cache, a partitioned
register file for GPUs is proposed in [59]. It consists of a fast
partition operating at nominal voltage and a slow partition
operating at near-threshold voltage. Such a design can readily
be adapted to AdvHet, by implementing the slow partition
in TFET and the fast one in CMOS.

IX. CONCLUSION

Ideally, we desire CPU and GPU cores that operate as
energy-efficiently as a TFET core, while providing the
performance of a CMOS core. To this end, this paper
has proposed the HetCore architecture, which judiciously
integrates both TFET and CMOS units in a single core,
creating a hetero-device core. Our results show that such as
design is very promising, even with conservative assumptions.
An AdvHet CPU consumes on average 39% less energy
than a CMOS CPU, while delivering a performance that
is within 10% of the CMOS CPU. In addition, under a
fixed power budget, a multicore with AdvHet CPUs attains
average performance gains of 32% over a multicore with
CMOS CPUs, while reducing ED2 by 68%. Similarly, an
AdvHet GPU consumes on average 40% less energy and
performs within 20% of a CMOS GPU. Under a fixed power
budget, an AdvHet GPU with twice as many compute units
as a CMOS GPU improves average performance by 30%
while lowering ED2 by 60%.
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