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ABSTRACT: Two-dimensional (2D) materials offer an ideal
platform to study the strain fields induced by individual atomic
defects, yet challenges associated with radiation damage have so far
limited electron microscopy methods to probe these atomic-scale
strain fields. Here, we demonstrate an approach to probe single-
atom defects with sub-picometer precision in a monolayer 2D
transition metal dichalcogenide, WSe2−2xTe2x. We utilize deep
learning to mine large data sets of aberration-corrected scanning
transmission electron microscopy images to locate and classify
point defects. By combining hundreds of images of nominally
identical defects, we generate high signal-to-noise class averages which allow us to measure 2D atomic spacings with up to 0.2 pm
precision. Our methods reveal that Se vacancies introduce complex, oscillating strain fields in the WSe2−2xTe2x lattice that
correspond to alternating rings of lattice expansion and contraction. These results indicate the potential impact of computer vision
for the development of high-precision electron microscopy methods for beam-sensitive materials.

KEYWORDS: Deep learning, fully convolutional network, single-atom defects, strain mapping, scanning transmission electron microscopy,
2D materials

A key challenge in characterizing two-dimensional (2D)
materials is determining the structure of defects with sub-

picometer precision. Defect and strain engineering of 2D
materials are emerging tools to tune the optical and electronic
properties of atomically thin layers.1−3 Yet, while techniques
such as aberration-corrected scanning transmission electron
microscopy (STEM) have the spatial resolution to image each
atom in 2D materials, the precision of atom-by-atom electron
microscopy has so far been limited to the scale of 8−20 pm, or
strains on the order of 3% or more.4−6 While these methods
can detect the relatively large strains at the nearest-neighbor
sites of vacancies, the corresponding local strains (≈1%)
expected to result from substitutions and long-range strain
fields from point defects have so far been below the detection
limits of atomic-resolution (S)TEM.
This precision is fundamentally limited by signal-to-noise

ratio (SNR).7 High radiation doses are required to precisely
measure the position of single atoms, yet ionization and knock-
on damage alter the structure of defects at high electron dose
for 2D materials,8−10 severely limiting the achievable SNR. In
bulk materials where the precision is limited by microscope
instabilities rather than electron beam damage, the measure-
ment precision can be enhanced by acquiring a series of images
on the same region, then combining the resulting data to
minimize image distortion or achieve higher SNR using

techniques such as drift correction (10 pm),11 template
matching (5−15 pm),12,13 rigid (5 pm),14 and nonrigid
registration (0.3−0.9 pm).15 Note that precision better than
spatial resolution in (S)TEM imaging is routinely
achieved5,6,11−15 since they represent two different aspects of
a measurement: Precision is the statistical spread of measured
distances in an image, while resolution is the smallest distance
between two objects that remains distinguishable for an
imaging system. On their own, these approaches have limited
utility for measuring the intrinsic structure of 2D materials
because they typically require high doses on the order of 108−
109 e−/nm2, above the damage thresholds for many 2D
materials. For example, serious electron beam damage of free-
standing, monolayer MoS2 has been observed after an electron
dose of 2.8 × 108 e−/nm2 at 80 kV9. Meanwhile, diffraction-
based strain measurements such as nanobeam electron
diffraction16 can measure sub-picometer (sub-pm) strains in
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2D transition metal dichalcogenides (TMDCs), but are limited
to a spatial resolution of a few nanometers. These challenges
mean that for 2D materials, existing techniques exhibit a trade-
off between spatial resolution and the precision with which
strain can be measured, making it difficult to measure the strain
field of atomic defects. Yet at the same time, 2D materials offer
a profound opportunity for understanding atomic-scale strain.
Because they are only a single unit cell thick, 2D materials are
ideal for demonstrating high precision characterization
methods, such as the ability to characterize how each atom
in a material responds to local perturbations.4,6,17−19

Here, we apply machine learning to locate and classify each
point defect in large data sets of atomic-resolution images, then
use the resulting data to generate class-averaged images of
single-atom defects in 2D materials. This method enables sub-
pm precision measurements of beam-sensitive structures
because it combines information measured from large numbers
of nominally identical defects while limiting the dose to any
individual atom. Our approach is analogous to the class-
averaging methods used in single particle cryo-electron
microscopy, where they are used to aid in solving the structure
of biological macromolecules and viruses.20

We demonstrate our approach using an alloyed 2D TMDC,
monolayer WSe2−2xTe2x. Previously, STEM has been used to
directly measure the local variations in the concentration,
ordering, and properties of alloyed TMDCs.21−24 We
synthesized 2H-WSe2−2xTe2x using cooling-mediated, one-
step chemical vapor deposition (CVD) on SiO2/Si substrates.

The WSe2−2xTe2x was then transferred to TEM grids using a
wet-transfer technique (see Supporting Information (SI)).
These methods produce suspended flakes of predominately
monolayer WSe2−2xTe2x that are 10−20 μm across. These
WSe2−2xTe2x samples naturally contain point defects including
Te substitutions and Se vacancies which provide local lattice
distortions that can be used to test our techniques.
We next acquired aberration-corrected annular dark-field

(ADF) STEM images (Figure 1a) and used machine learning
to locate and classify the defects present, as illustrated in Figure
1. Each “single” STEM image was acquired as 10 sequential
frames with short dwell times (2 μs/pixel) in the same region
and then frame-averaged. Similar methods have been
previously shown to minimize image distortions from sample
drift to enable high-precision strain measurements from STEM
images.14,15,25 The image distortions that result from long
acquisition times are shown in Figure S9. The accumulated
dose for these frame-averaged images is 1.24 × 107 e−/nm2

with an equivalent dwell time of 20 μs/pixel. This dose lies in
the typical range for 2D TMDCs imaging and is below the
dose threshold to cause significant damage to the lattice. As
shown in Figure S1, these frame-averaged images are
comparable or even better in SNR than single-frame images
acquired with the same dose. For this study, we analyzed
images of 9 different regions, spanning a total area of 4000
nm2, or approximately 130,000 atoms. To analyze the data, we
trained a deep learning model based on fully convolutional
networks (FCNs) with ResUNet architecture to locate and

Figure 1. Deep learning-enabled identification and classification of point defects in ADF-STEM image. (a) Atomic-resolution ADF-STEM image of
WSe2−2xTe2x. To minimize image distortions, the data are acquired as 10 sequential frames with short dwell times and then frame-averaged. The
total dose is 1.24 × 107 e−/nm2. (b) Chalcogen-site defects identified by FCNs overlaid on image from (a). Labels indicate one or two Te
substitutions (SeTe and 2Te, respectively) and single or double Se vacancies (SV and DV). (c−f) Top- and side-view schematics of defect
structures. The chalcogen defect centers are marked with dashed triangles.
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classify the point defects in WSe2−2xTe2x, producing 2D maps
of the defect positions (Figure 1b). Neural networks have
already revolutionized image recognition in fields such as
medical diagnosis, weather forecasting, and facial recognition;

recently, they have also been applied to identify atomic defects
in atomic-resolution (S)TEM images.26−28 Conventionally,
defect detection has been a labor-intensive task which is often
done by hand6,22 or simple image processing such as Fourier

Figure 2. Comparisons between single and class-averaged images of 2Te, SeTe, SV, and DV defects. (a−d) Representative single images of FCN-
identified defects sectioned from Figure 1a. We did not apply any smoothing, Fourier filtering, or probe deconvolution to our STEM images. By
aligning and summing many equivalent lattice sites using rigid-registration, we produce high SNR, class-averaged images (e−h) from nominally
identical point defects. The number of images summed is labeled at the top right corner of each image.

Figure 3. Impact of class averaging on signal-to-noise and precision of atomic separations. (a,b) Distributions of projected W−W separations
nearest to the defect site in (a) individual (b) class-averaged images generated by summing 312 single Te substitution (SeTe) and 437 defect-free
(2Se) images, respectively. Class-averaged distributions are generated through bootstrapping. Unlike in the individual images, the class-averaged
images show well-separated distributions of W−W separation measurements of SeTe substituted and defect-free 2Se sites. From class averaging, the
measured W−W separation is 331.6 ± 0.4 pm at SeTe substituted sites and 329.5 ± 0.3 pm at defect-free 2Se sites. (c) Precision and SNR gain as a
function of summed images N. The precision scales with P N/initial , while the SNR gain scales with N due to the reduction of Poisson noise. (d)
Distributions of projected W−W separations measured on class-averaged images of defect-free 2Se sites and each defect types (2Te, SeTe, SV,
DV), which yielded local strains of 1.2 ± 0.2%, 0.6 ± 0.2%, −4.8 ± 0.1%, and −8 ± 1%, respectively.
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filtering29 or intensity thresholding.24,30 Neural networks offer
an opportunity to automate defect identification, making it
possible to efficiently locate large numbers of defects to
generate class averages systematically while minimizing human
intervention. We trained FCNs using simulated data generated
via incoherent image simulations using Computem.31,32 In
order to make our simulations more realistic, we apply a set of
postprocessing steps to the images, including the addition of
Gaussian noise, probe jittering, image shear, and varying spatial
sampling, to create our final training data. Similar methods are
well-established in the literature,26−28 though we found that we
achieved the highest classification precision on experimental
data by introducing low-frequency contrast variations in the
simulated data to emulate surface contamination. We found
that these methods yielded a true positive rate of 98%. When
we compared the true positive rate with FCNs trained directly
on hand-labeled experimental data, we found that the
simulation-trained data performed comparably to FCNs
trained on experimental data but with considerably less manual
labor (see SI for evaluation metrics). The source codes for
training set generation and model training are freely available
on Github at: github.com/ClarkResearchGroup/stem-learn-
ing/.
We focused on the four primary types of chalcogen-site

defects present in our samples, which we refer to as 2Te, SeTe,
SV, and DV (see Figure 1c−f). Our naming convention
describes the composition and filling of the chalcogen sites in
WSe2−2xTe2x. In projection, the chalcogen columns can contain
either two Se atoms (no defects, 2Se), one or two Te
substitutions (SeTe and 2Te, respectively), or one or two Se
vacancies (SV and DV). These defects are the most common
point defects we observed in WSe2−2xTe2x. Using the large data
sets probed by FCN, we conducted population analyses of the
defects present in WSe2−2xTe2x. We calculated both the total
number and concentrations (over all 86,000 chalcogen sites) of
each defect type in our experimental images. We found the Te
fraction in our samples is WSe2−2xTe2x where x = 0.06.
Meanwhile, 3% of chalcogen sites are occupied by vacancies;
this number is an upper bound of the as-grown vacancy
concentration because TEM sample fabrication and electron
irradiation can induce additional vacancies. We found that
metal-site defects were extremely rare (comprising less than
0.04% of metal sites), and we did not observe columns
containing a single Te atom (1Te).
Next, we generated class-averaged images of each defect type

from the FCN outputs (Figure 2). From the thousands of
defects identified via the FCN, we selected only isolated
defects, that is, defects that were separated by a distance d ≥
6.6 Å (roughly 4 × 4 unit cells) from any other defects. This
step dramatically reduced the number of defects used for class
averaging, but it allowed us to study the structure of the defects
with minimal external perturbations. The use of FCNs enabled
this extra selection process because it allowed us to locate a
sufficiently large population to retain several hundred defects
in each class after this step. We then sectioned the original
images into small windows centered around each individual
defect as shown in Figure 2a−d. In order to avoid the
introduction of image artifacts, we did not apply any
smoothing, Fourier filtering, or probe deconvolution to our
STEM images. The sectioned images were grouped by defect
type, creating image stacks containing 180 2Te, 312 SeTe, 576
SV, 18 DV individual defects and 437 defect-free 2Se regions.
Finally, we aligned and summed each image stack using rigid

registration,25 producing the high SNR class-averaged images
shown in Figure 2e−h.
As shown in Figure 3, class averaging enables sub-pm

precision measurements of atomic spacings and local strains. In
Figure 3a, we used 2D Gaussian fitting to determine the
positions of atomic columns in a series of single images,
measure the three nearest W−W spacings around SeTe
substitutions, and compare them with the same measurements
in defect-free images. We obtained W−W spacings of 330 ± 8
pm (std. dev.) for the SeTe substitution and 330 ± 6 pm for
defect-free 2Se sites. The histograms in Figure 3a overlap
heavily, indicating that single images cannot be used to
distinguish the local strains around a single Te substitution.
The 6−8 pm precision we obtained for single images is
comparable to or better than similar measurements previously
reported for 2D materials,4−6 indicating the high quality of our
starting data.
In contrast, Figure 3b shows the well-separated distributions

of W−W spacings measured from class-averaged images. To
generate these distributions, we apply a bootstrap approach
commonly used in statistical analysis33 to produce several
class-averaged images using randomly selected subsets of
images from the original image stack. These bootstrapped class
averages allow us to estimate the measurement precision using
the same definition as for single images (see Figure S5). For
the class-averaged data, we measure W−W separations of
331.6 ± 0.4 pm around the Te substitution (summing 312
images for each class average) and 329.5 ± 0.3 pm for the
defect-free site (using 437 images). Additionally, we evaluated
the accuracy of the measurement by calculating the average
deviation between W−W separations along 3 equivalent lattice
directions. We obtained an average deviation of 0.2 pm, a value
that is consistent with the image distortion predicted by the
sample drift rate (5 pm/sec). This indicates our 0.3 pm
precision approaches the accuracy limit (0.2 pm) set by
instrumental drift. These data show the utility of class
averaging, which provided a 20-fold improvement in precision
when summing 437 images, sufficient to measure local strains
on the order of 0.1%. Notably, the sub-pm precision obtained
using our class-averaging approach is comparable to the
highest precision electron microscopy measurements obtained
via multiframe averaging in bulk materials,15 but without
increasing the dose per unit area. Importantly, the dose needed
to acquire a single image of one Se vacancy with equivalent
SNR is 7.14 × 109 e−/nm2, a dose that causes severe damage to
monolayer WSe2−2xTe2x (see Movie S1). This approach allows
us to access the small strains around atomic defects in 2D
materials while minimizing electron beam damage.
The sub-pm precision obtained in the class-averaged images

is a direct result of their increased SNR. Figure 3c plots the
precision and SNR gain in class-averaged images as a function
of the number of images summed, ranging from 1 to 437
defect-free regions. In order to generate this plot, we quantified
the statistical spread of measured distances between equivalent
atomic columns in a defect-free lattice, similar to the approach
used in ref 15 that does not involve bootstrapping (see Figure
S6). The gain in the SNR, which is defined as SNRsum/SNRraw,
scales as N , where N is the number of images summed.
Meanwhile, the measurement precision of the atomic spacings
scales as P N/initial and eventually approaches 0.3 pm, in
excellent agreement with the value obtained using boot-
strapping. These scaling laws arise because Poisson noise is the
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dominant source of noise in the ADF-STEM detector.7,25

Figure 3d shows the distributions of nearest-neighbor W−W
atomic spacings for each class-averaged defect type measured
via bootstrapping. The variation in the widths of these
distributions, such as the wide distribution of DV, mainly
results from differences in the number of defects summed. The
distributions for each defect type are well separated, indicating
that we are able to distinguish the local lattice expansion from
single and double Te substitutions as well as the contraction
that results from single and double Se vacancies after class
averaging.
Next, we measured the displacement and strain fields for

each defect type. Figure 4a−d shows magnified 2D displace-
ment vectors overlaid on class-averaged defect images.
Displacement vectors are obtained by comparing the positions
of each atomic column on class-averaged defect images to the
positions measured in a defect-free, class-averaged reference
image. Single (SV) and divacancies (DV) correspond with a
local contraction of the lattice, while single (SeTe) and double
(2Te) substitutions produce a local expansion. The magnitude
of the displacement vectors decays quickly as a function of
distance from the defect centers, for example, dropping below
1 pm within 3 unit cells for a single Te substitution. To better
visualize the local distortions, we calculated the 2D strain
tensor components (ϵxx, ϵxy, ϵyx, and ϵyy) for each defect type.

Density functional theory (DFT) simulations indicate that
these in-plane strain components are much larger than out-of-
plane deformation and that as a result, the 2D strain fields
measured from the 2D projections in STEM images are a good
approximation of the full 3D deformation. The continuous
strain maps are generated by first interpolating the discrete 2D
displacement vectors and then taking spatial derivatives along
the x and y directions (see Figure S7 for more details). While
the strain tensor is only formally defined at positions halfway
between each pair of atomic sites, the interpolated strain fields
are commonly utilized because there is a standardized method
to compute them and because they well-suited for comparisons
to continuum models. For comparison, we also computed the
discrete version of the 2D strain components, which
reproduces all the main features of the continuous version
(see Figure S8).
Figure 4e−h shows the experimental dilation maps, which

correspond to local 2D area change associated with each
defect, calculated as the sum of the diagonal components ϵxx +
ϵyy of the strain tensor. We compared these experimental
dilation fields to those calculated using a purely elastic
continuum theory. To calculate the strain field that would
result from an ideal elastic medium, we use the 2D version of
Eshelby’s inclusion model, where the crystal is modeled as an
infinite, isotropic 2D elastic continuum under deformation

Figure 4. Displacement and strain fields for chalcogen site defects. (a−d) Two-dimensional displacement vector field overlaid on class-averaged
images of chalcogen site defects. The vectors are enlarged for visibility by 40 times in (a,b) and 10 times in (c,d). (e−h) Experimental dilation fields
calculated from the displacement fields. The dilation corresponds to the local projected area change. (e) 2Te and (f) SeTe exhibit local expansion,
while (g) SV and (h) DV exhibit local contraction. (i−l) Best-fit dilation fields calculated with 2D isotropic elastic continuum theory using
Eshelby’s inclusion model.
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from a point-like inclusion.34−36 While the best-fit elastic
models (Figure 4i−l) capture the behavior of the experimental
dilation fields near the defect core (Figure 4e−h), we also
notice key differences, discussed below. While they are not
surprising, deviations from the continuum elastic models have
remained challenging to observe; indeed in many cases,
continuum models have remained a good fit to strain fields in
2D materials to within the measurement precision.4,36

Figure 5 compares the ϵxx, ϵyy, and dilation components of
experimental strain fields from a single vacancy (Figure 5a−c)
to both a best-fit elastic continuum theory (Figure 5d−f), and
first-principles simulations using DFT (Figure 5g−i). To more
precisely compare the differences between experimental data
and models, we used the methods described above to acquire

and process a larger experimental data set of 2939 single
vacancies. This produced a precision of 0.2 pm, a regime where
the measurement error is limited by sample drift and
instrument instabilities rather than signal-to-noise. Compared
with the equivalent data in Figure 4g, the higher precision in
Figure 5c makes apparent 6-fold symmetric periodic
oscillations in the dilation field, centered around the vacancy.
Although the exact appearance of the strain field oscillations
does depend on the interpolation process, they are apparent in
the displacement vectors before interpolation, which oscillate
in strength along the radial direction.
In order to calculate strain fields from DFT simulations, we

conducted structural relaxations of both the SV and defect-free
lattice (see SI). A 9 × 9 supercell was required to avoid

Figure 5. Strain fields at single Se vacancy. (a−c) Experimental strain fields calculated from the derivative of displacement field. Compared to
Figure 4g, Figure 5 utilizes a larger data set of 2939 single Se vacancies. (d−f) Best-fit strain fields calculated by elastic theory using Eshelby’s
inclusion model. (g−i) Strain fields calculated from DFT simulations of defect relaxation. The anisotropic features show a good match with the
experimental data (a,b). (j) Line profiles of experimental, elastic theory, and DFT-derived ϵyy across the vacancy, as marked by dashed arrow. The
shaded regions of the experimental line profile correspond to the full-range of the experimental distribution of strain values (±0.25%), while the
standard deviation is measured to be 0.1% using bootstrapping. In contrast to the monotonically decaying strain field predicted by continuum
elastic theory, both experimental and DFT profiles show oscillations in the strain field. Vertical lines indicate the locations of W and Se columns.

Nano Letters pubs.acs.org/NanoLett Letter

https://dx.doi.org/10.1021/acs.nanolett.0c00269
Nano Lett. 2020, 20, 3369−3377

3374

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c00269/suppl_file/nl0c00269_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00269?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00269?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00269?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00269?fig=fig5&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://dx.doi.org/10.1021/acs.nanolett.0c00269?ref=pdf


coupling of the strain field between defects when using
periodic boundary conditions. Using the relaxed atomic
coordinates, we simulated ADF-STEM images using a
multislice algorithm implemented in Computem31 and then
applied the same methods used for our experimental data to
calculate the DFT-derived strain fields.
The experimental strain fields deviate from continuum

elastic theory in two main ways. First, they are not isotropic in
2D but instead reflect the symmetry of the lattice. For example,
the regions marked by the black dashed lines in Figure 5a have
higher intensity in the top half of the image. Similarly, the
experimental ϵyy is asymmetric across the center of the defect
(Figure 5b). These asymmetries are present in the DFT
simulations (Figure 5g,h), but not in the continuum elastic
model, which predicts 2-fold symmetric ϵxx and ϵyy (Figure
5d,e) due to its isotropic nature. Second, while the dilation
field calculated using the continuum elastic model indicates
only local contraction around the vacancy (Figure 5f), we
observe alternating rings of contraction and expansion in the
DFT data (Figure 5i) and in experiment (Figure 5c), forming a
radially oscillating strain field. Radial strain field oscillations
were first predicted in the mid-1950s37,38 around point defects
in face-centered cubic crystals. By enabling high-precision
measurements of strain at atomic resolution in 2D materials,
our methods now allow these strain field oscillations to be
directly observed.
We investigate these strain field oscillations in more detail in

the line profile of ϵyy in Figure 5j. In this plot, the mean
experimental strain profile is shown in dark blue, while blue
shading indicates the range of strain values calculated via
bootstrapping. In the continuum elastic model (orange), the
strain field monotonically decays away from the defect core,
whereas the DFT (black) and experiment (blue) show clear
oscillations up to a nanometer away from the defect core.
Overall, we find excellent agreement between experiment and
DFT-PBE, particularly for the locations of maxima and minima
of strain field oscillations. The observation of these strain field
oscillations is made possible because our approach achieves a
sub-pm measurement precision previously only obtained by
nanobeam diffraction in 2D materials,16 but now at atomic
resolution. We do note that the peak experimental strain field
is smaller in magnitude than in the DFT. This likely occurs
because DFT-PBE is known to underestimate elastic constants
relative to experiment with a generalized-gradient approx-
imation for exchange and correlation.39 Passivation of some
vacancies is another possible contributing factor.
To understand the origin and significance of these strain

field oscillations, we note that similar phenomena have been
predicted in both bulk metals40 and ceramics.41 In metals,
radially oscillating strain fields may arise from defect-induced
charge redistribution such as Friedel oscillations,42 while for
ionic crystals, Coulomb interactions between charge perturba-
tions at defect site and ion cores of opposite signs lead directly
to oscillations in the strain field. Either of these effects may
contribute to the features we see in WSe2−2xTe2x. Accurate
models for these complex strain fields were part of the
historical motivation for the development of lattice static
methods such as the Kanzaki method37 and Green’s function
methods for modeling point defects in crystals.43,44 In this
context, direct observation of radially oscillating strain fields in
2D materials indicates both a new milestone in the ability to
test and refine high-accuracy mechanical models for defects in

crystals and a need to account for long-range strain fields when
modeling defects in atomically thin materials.
In conclusion, we have developed techniques based on

machine learning and aberration-corrected STEM to visualize
the strain fields induced by single-atom defects in 2D materials.
We used these methods to directly observe the strain fields of
vacancies and substitutions in WSe2−2xTe2x, where the sub-pm
precision enabled by class averaging revealed oscillations in the
strain field around chalcogen vacancies that deviate from
isotropic elastic continuum theory but agree well with DFT
simulations. We show that deep learning enables the first direct
imaging of radial strain field oscillations around vacancies, a
phenomenon originally predicted in the mid-1950s37,38 but
never experimentally imaged. A key advantage of these
methods is that they enable high precision measurements of
beam-sensitive materials by leveraging computer vision to mine
atomic-resolution data sets without requiring any changes in
instrumentation. These methods should be particularly useful
for studying 2D materials and other radiation-sensitive crystals
and elucidating the complex strain phenomena that arise from
structural rearrangements and defect−defect interactions.
Going forward, our deep learning enabled class averaging can
be applied in principle to any atomic resolution electron
microscopy data sets, including spectrum imaging and four-
dimensional STEM.
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