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ABSTRACT: Ridged, orthorhombic two-dimensional atomic crystals with a
bulk Pnma structure such as black phosphorus and monochalcogenide
monolayers are an exciting and novel material platform for a host of
applications. Key to their crystallinity, monolayers of these materials have a
4-fold degenerate structural ground state, and a single energy scale EC
(representing the elastic energy required to switch the longer lattice vector
along the x- or y-direction) determines how disordered these monolayers are
at finite temperature. Disorder arises when nearest neighboring atoms
become gently reassigned as the system is thermally excited beyond a critical temperature Tc that is proportional to EC/kB. EC is
tunable by chemical composition and it leads to a classification of these materials into two categories: (i) Those for which EC ≥
kBTm, and (ii) those having kBTm > EC ≥ 0, where Tm is a given material’s melting temperature. Black phosphorus and SiS
monolayers belong to category (i): these materials do not display an intermediate order−disorder transition and melt directly. All
other monochalcogenide monolayers with EC > 0 belonging to class (ii) will undergo a two-dimensional transition prior to
melting. EC/kB is slightly larger than room temperature for GeS and GeSe, and smaller than 300 K for SnS and SnSe monolayers,
so that these materials transition near room temperature. The onset of this generic atomistic phenomena is captured by a planar
Potts model up to the order−disorder transition. The order−disorder phase transition in two dimensions described here is at the
origin of the Cmcm phase being discussed within the context of bulk layered SnSe.

KEYWORDS: 2D atomic materials, black phosphorus, layered monochalcogenides, phase transitions, structural degeneracies,
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Monolayers of layered orthorhombic materials1−18 can
become disordered at room temperature.

Graphene19,20 and other 2D atomic materials such as
hexagonal boron nitride and transition-metal dichalcogenide
monolayers21,22 have a nondegenerate structural ground state
that is key to their stability at room temperature. On the other
hand, the ridged structure of black phosphorus monolayers and
other materials with a similar atomistic structure leads to their
celebrated anisotropic electron and optical properties.2 At the
same time, such unique atomic arrangement has striking
consequences for crystalline order23−36 that remain unexplored
up to date.
Indeed, the remarkable multifunctionality of ferroelectrics

largely originates from the degeneracies of their structural
ground state,37 and degeneracies of the structural ground state
lead to well-known mechanical instabilities in two-dimensional
critical lattices at finite temperature as well.38 If the structural
ground state of black phosphorene (BP), black arsenene, and
monochalcogenide monolayers (MMs) turned out to be
degenerate, this family of two-dimensional materials must

necessarily and inevitably display in-plane disorder at finite
temperature. Structural degeneracies may even be key to
explain the Pnma−Cmcm transition seen in bulk samples that
has drawn considerable excitement in the thermoelectric
community.10,39 Structural degeneracies of two-dimensional
atomic materials may open the door for new physics and may
also lead to new and completely unexplored material
functionalities that could be controlled with temperature.
This study contains a discussion of degeneracies of the

structural ground state of monolayers with a Pnma structure at
zero temperature; the determination of an energy EC that
depends on atomic number and sets the energy scale for elastic
transitions among degenerate ground states; Car−Parrinello
molecular dynamics (MD) calculations at finite temperature
(carried out on a code that employs localized orbital basis sets)
that permit relating the specific heat and an order parameter to
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EC; and a coarse-grained in-plane (clock) Potts model with q =
4 that matches the MD data up to the order−disorder
transition at a critical temperature proportional to EC/kB, where
kB is Boltzmann constant. The two-dimensional (2D) order−
disorder transition discovered here must have profound
consequences for all material properties, including degradation
propensity, and it can be experimentally verified by scanning
tunneling microscopy,10 temperature-dependent polarized
Raman measurements, specific heat measurements, among
other methods.
Results and Discussion. Structural Degeneracies at Zero

Temperature. The degeneracy of the structural ground state at
zero temperature is generic to all monolayers having a Pnma
structure, and it is discussed within the context of a GeS
monolayer (Figure 1) next.

The first source of degeneracy seen on the elastic energy
landscape40 (Figure 1a) stems from the fact that the elastic
energythe total energy at zero temperature as a function of
lattice parameters E(a1, a2))is degenerate upon exchange of
a1 and a2: E(a1, a2) = E(a2, a1). The degeneracy is highlighted
with star-like patterns at ground states A (located at (4.34 Å,
3.74 Å)) and B (at (3.74 Å, 4.34 Å)) where EA = EB = 0. The
second source of degeneracy, illustrated on Figure 1b, arises
from the two mirror-symmetric black zigzag patterns that can
be created by the basis vectors. (The lower sublayer was white-
colored on the structural models to make the patterns more
evident.)
The four degenerate structural ground states A1, A2, B1, and

B2 on Figure 1b occur when specific triads of atoms 1−0−2, 3−
0−4, 3−0−1, or 4−0−2 create nearest-neighbor bonds, and
this in-plane bond structure can be identified with four in-plane
arrows: →, ←, ↓, ↑.24 These atoms form an extra bond to the
lower sublayer making the structure 3-fold coordinated, but
that lower layer reassigns bonds in a similar manner making a
discussion of its rearrangement unnecessary.
It is possible to reassign a nearest-neighbor bond at zero

temperature (or to turn arrows by ± π/2) by means of the
elastic distortion shown by the white dashed curve on Figure 1a
that converts ground state A1 (A2)with bonding atoms 1−0−

2 (3−0−4)onto ground state B1 (B2), where atoms 1−0−3
(4−0−2) bond.
Indeed, the distortion highlighted by the dashed white curve

on Figure 1a includes the saddle point C where all 4 atoms
bond to atom 0, turning the original zigzag structure onto an
unstable “checkerboard” structure with an energy cost EC. When
the bond to the lower plane is included, this checkerboard
structure is 5-fold coordinated. The structure must loose some
bonds as the elastic deformation along the white dashed path
continues from point C to point B, being equally likely to turn
into decorations B1 or B2 which are both 3-fold coordinated.
This is how bonds are reassigned at zero temperature. When
the lower sublayer (seen in white on Figure 1b) is considered,
one sees that two chemical bonds per unit cell are reassigned
when structure A1 (A2) turns onto structure B1 (B2).
Direct transitions from decoration A1 (→) to decoration A2

(←) (B1 (↓) onto B2 (↑)) are more costly as they require
reassigning twice as many bonds: 1−0−2 to 3−0−4 (or 3−0−1
to 4−0−2), or a π−arrow rotation on Figure 1b. These
transitions can be achieved in two elastic cycles (for instance,
from → to ↑, back to ←). The reassignment of nearest-
neighbors is at the core of the 2D disorder to be discussed later
on.

Tuning the Elastic Energy Barrier EC with Atomic Number
Z. The average atomic number Z̅ is defined as follows:

∑̅ =
=

Z Z
1
4 i

i
1

4

(1)

where the sum is over the four atomic elements on a unit cell,
each having atomic number Zi (i = 1, 2, 3, 4). It will be shown
that both a1/a2 and EC evolve with Z̅ now.
The magnitude of EC was determined through stringent

calculations with the VASP code41,42 whose details are provided
as Supporting Information. As indicated previously, Car−
Parrinello MD calculations will also be necessary to verify our
main claim, and these calculations are prohibitively expensive
on any computational code that employs plane-wave sets. For
that reason EC was also computed with the SIESTA code,43 as
that code will permit carrying out MD calculations at the
expense of making a choice for the localized basis set in which
electronic wave functions are to be expanded. Our choice of
basis set, described in the Methods section, is such that the
magnitude of the lattice constant for BP agrees reasonably well
among these two computational tools.
The values of a1/a2 and EC averaged over their magnitude

from three different calculations are displayed in Figure 2 and
Table 1 (see Methods). Light compounds such as BP or SiS
monolayers (Z̅ = 15) have the largest values of a1/a2 and EC.
On the other hand, ultrathin Pb-based monochalcogenides (Z̅
> 48) have a rock-salt structure so that a1/a2 = 1 and EC = 0. All
remaining monochalcogenide monolayers (MMs) have values
of a1/a2 and EC lying somewhere in between, which implies a
vast tunability of a1/a2 and EC with atomic number.
Bond covalency is gradually sacrificed with increasing atomic

number to favor a higher atomistic coordination and a weaker
(i.e., metallic) bonding. In previous work, we showed that
group-IV two-dimensional materials turn from a 3-fold to a 9-
fold-coordinated phase with increasing atomic number.44 In the
present case, a 3-fold-coordinated structure evolves toward a 5-
fold-coordinated one with increasing Z̅. Being more specific,
a1/a2 − 1 decays quite rapidly with Z̅ and regardless of the
numerical approach employed. We fit:

Figure 1. (a) The elastic energy landscape E(a1, a2) as a function of
lattice parameters a1 and a2 is generic to all monolayers with a Pnma
structure, and it is exemplified on a GeS monolayer at zero
temperature. A dashed white curve joins points A and B at two
degenerate minima (EA = EB = 0). The circle labeled C at (4.0 Å, 4.0
Å) is a saddle point with an atomistic structure in which atom 0 forms
bonds to four in-plane neighbors, and the elastic energy barrier is
defined by EC. (b) Atomistic decorations (i.e., the specific pair of
atoms bonding atom 0) increase the structural degeneracy at points A
and B. The four degenerate ground states are named A1, A2, B1, and B2
and assigned in-plane arrows that label them uniquely.
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with b = 3.74 and c1 = 2/16.5, and display this trendline as the
solid curve on Figure 2a. The decrease of the ratio a1/a2 with
increasing atomic number implies that the energy needed to
reach the intermediate state C with a1 = a2 by an elastic
distortion is becoming smaller with Z̅ too, and using values of
EC from Table 1 one fits:

̅ = − ̅E Z d c Z( ) exp( )C 2 (3)

with numerical parameters d = 37 650 K and c2 = 1/6 (this
trendline is shown as a straight line in Figure 2b).
Experimental values for the melting temperature Tm of bulk

compounds are reported in Table 1 as well. We make an
additional point by assuming that the melting temperature of
monolayers is relatively close to Tm. Then, Tm permits a
classification of these two-dimensional materials into two
groups: (i) those having EC ≥ kBTm and (ii) those where kBTm
> EC ≥ 0. Black phosphorus and SiS monolayers belong to
category (i). Given the error bars in EC, SiSe appears to be
borderline between class (i) and (ii). All other MMs belong to
class (ii).
The classification introduced in previous paragraph can be

used to draw a direct connection to experiments on BP
monolayers: Most theory developed for BP has been carried
out under the implicit assumption that its atomistic structure
does not drastically change in between 0 K and room
temperature, and this is confirmed by experiments. Such
agreement appears to counter the statement that materials with
a Pnma structure undergo an order−disorder transition. But its
rather large magnitude of EChigher than its melting
temperatureprevents this material from thermally exploring
its degenerate ground states up until it melts and thus solves
the apparent contradiction.
The significance of Equation 3 can hardly be overstated, for it

indicates that EC is tunable by the choice of compound in Table
1, all the way from 0 K and up to temperatures above Tm. In
stark contrast to BP monolayers, some MMs will undergo a 2D
order−disorder transition, so that the implicit assumption that
structural symmetries obtained at zero temperature remain
unchanged at finite temperature does not hold true for many
MMs.

Two-Dimensional Disorder at Finite Temperature. So far,
elastic transitions among q = 4 degenerate ground states at zero
temperature have been studied, and the energy EC(Z̅) required
to cycle among these four structures via elastic strain at zero
temperature was established. It will now be proven that the
generic existence of four ground states with a finite energy
barrier EC(Z̅) to switch among these structures leads to two-
dimensional disorder on materials belonging to class (ii) by
means of a reassignment of nearest-neighboring bonds at finite
temperature.
Previous assertion will be demonstrated with Car−Parrinello

molecular dynamics (MD) calculations43,46,47 performed for
1000 fs at 30, 300, and 1000 K on periodic supercells
containing 576 atoms with all unit cells initially set to the A1
(→) decoration. These calculations permit establishing that
materials with EC > kBTm belonging to category (i) do not show
bond reassignment at any of these temperatures, and that
materials belonging to category (ii) having EC/kB < 300 K do
show disorder at room temperature.

Figure 2. (a) The ratio a1/a2 among orthogonal in-plane lattice
constants decreases exponentially with the mean atomic number Z̅,
and (b) EC decays exponentially with Z̅ as well. EC/kB < 300 K (and
a1/a2 ≤ 1.1) for Z̅ ≥ 30, prompting the question whether 3-fold
coordinated GeSe, SnS, and SnSe monolayers are disordered near
room temperature. Structures with a1 ≃ a2 display a 5-fold-coordinated
and nondegenerate ground state with EC ≃ 0. Solid lines are fits whose
parameters are given in the main text (see Methods).

Table 1. Ratio a1/a2 among Lattice Parameters at Zero
Temperature, and the Elastic Energy Barrier EC Required to
Switch in between Degenerate Ground States for BP and 12
MMsa

melting temperature

compound Z̅ a1/a2 EC/kB(K) Tm (bulk) (K)

BP 15 1.38 ± 0.01 5159 ± 75 883
SiS 15 1.40 ± 0.04 3536 ± 462 1173
SiSe 24 1.27 ± 0.11 730 ± 446
GeS 24 1.24 ± 0.09 653 ± 221 888
GeSe 33 1.08 ± 0.02 220 ± 76 940
SiTe 33 1.05 ± 0.01 154 ± 24
SnS 33 1.05 ± 0.01 63 ± 0 1153
GeTe 42 1.04 ± 0.00 95 ± 9 998
SnSe 42 1.04 ± 0.02 87 ± 79 1134
PbS 49 1.00 ± 0.00 0 1391
SnTe 51 1.01 ± 0.01 10 ± 14 1063
PbSe 58 1.00 ± 0.00 0 1351
PbTe 67 1.00 ± 0.00 0 1197

aEC decays exponentially with the average atomic number Z̅ (eq 2 on
the main text). Data scatter arises from the fact that three numerical
codes were employed in computing these quantities (see Methods).
Experimental melting temperatures of bulk samples are also included
for comparison purposes.45
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Nelson makes a point that relevant thermodynamical
phenomena can be described without recourse to full atomistic
detail: coarse-grained descriptions with effective parameters
extracted from atomistic data increase our intuition of the
observed phenomena.27 Following this philosophy, an atomic
bond was drawn if interatomic distances lie within 10% of their
value on the structure at 0 K.
The total energy equilibrates within 500 fs (Supporting

Information), and Figure 3a shows a snapshot at the 1000 fs
step for a BP monolayer (Z̅ = 15 and EC = 5159 ± 75 K) on a
periodic 12 × 12 supercell at 300 K. The vertical zigzag patterns
shown by black bonds consistent with a A1 decoration (Figure
1b) that are characteristic of materials with a Pnma structure
can clearly be resolved throughout the dynamical evolution.
The zigzag pattern remains unchanged throughout the entire

MD evolution, and Figure 3a, thus demonstrates that a BP
monolayer retains its Pnma structure up to room temperature
as it was hypothesized in previous subsection.
To investigate the hypothesis of two-dimensional disorder

created from reassignment of nearest-neighbor bonds on MMs
qualitatively, we disclose whether the vertical zigzag patterns
(characteristic of a material with all unit cells set to the A1
decoration) become altered at finite temperature at two time
steps, a task simplified by visualizing the upper sublayer only.
We show in Figure 3b the time evolution of the atomic

positions for atoms belonging to the upper sublayer of SiSe at
300 K (Z̅ = 24 and EC = 730 ± 446 K). As expected from its
large value of EC, the vertical zigzag pattern can be seen on the
figure at all times (the pattern is shown at 500 fs in orange, and
950 fs in black solid lines). The lack of nearest neighbors being

Figure 3. (a) Structural snapshot for BP at 300 K. (b−d) MD trajectories at 300 K for atoms in the upper sublayer for SiSe, GeS, GeSe, SnS, and
SnSe, respectively. Orange circles depict initial atomic positions, and trajectories during the MD simulation can be seen by continuous curves about
the initial positions. Bonds were drawn at 500 and 950 fs to inform of the reassignment of nearest neighbors as the dynamics unfold. Reassignment of
nearest neighbors is generic to MMs and has been explicitly marked by arrows on subplot (c).

Figure 4. Snapshots from Car−Parrinello MD runs at 1000 K at thermal equilibrium for a BP monolayer and a few MMs. With the notable
exception of BP, all other structures are transitioning onto molten phases. The scale bar shown for GeSe applies to all subplots.
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reassigned in Figures 3a and b does verify the intuition derived
in discussing Figures 1 and 2 in the sense that these materials
remain structurally stable at room temperature.
Excitingly, results from MD runs for GeS on Figure 3c (Z̅ =

24 and EC = 653 ± 221 K) begin to display the incipient bond
reassignment described in Figure 1b, as a unit cell acquires a B2
(↑) decoration at 500 fs, and another unit cell displays a B1 (↓)
decoration at 950 fs (nearest-neighbors being reassigned evolve
as a function of time). These decorations are singled out
explicitly by colored arrows. As predicted in Figure 1, these
atomic rearrangements are at the onset of the order−disorder
transition, and the recommitment of nearest neighbors seen in
those two instances induce local strain as atoms try to stabilize
unit cells in which the long axis lines up vertically (the long axis
lies horizontally on a A1-decorated structure). Full MD movies
for GeS at 30, 300, and 1000 K where bonds on both planes are
drawn are also provided as Supporting Information. We
demonstrate in the remainder of Figure 3 the effect of
increasing Z̅ on the 2D order−disorder transition at room
temperature.
GeSe in Figure 3d (Z̅ = 33 and EC = 220 ± 76 K) has a larger

number of in-plane nearest neighbor atoms being recommitted,
a situation that only aggravates on SnS and SnSe (Figure 3e and
f, respectively). In Heremans’ words, Figure 3c−f provide an
atomistic view of “a crystallographic phase transition arising
under conditions that lead to a collapse of the (two-
dimensional) crystal structure itself.”48

Snapshots at 1000 K on Figure 4 indicate that the BP
monolayer is still ordered so that it will directly melt at a
slightly larger temperature, a finding consistent with its value of
EC = 5100 K. All other monolayers are in the process of
transitioning onto molten phases, as indicated by the clustering
and dimerization on these images.

Although illustrative of the atomistic phenomena at play, it is
possible to go beyond the visual evidence provided in Figures 3
and 4 in arguing for the two-dimensional transition, and in
Table 2 we infer whether the two-dimensional order−disorder
transition has occurred from the ratio of the average lattice
constants ⟨a1⟩/⟨a2⟩ on 12 × 12 supercells at finite temperature
(see Methods).
As shown in Figure 3c, the onset of the transition is dictated

by reassignment of nearest neighbors. Reassignment occurs as
the atomistic structure explores the four degenerate ground
states displayed in Figure 1b once temperature reaches a
magnitude similar to EC/kB. Reassignment leads to the
macroscopic increase (decrease) of the average local lattice
parameter along the vertical (horizontal) direction (see Figure
1b) as local strain is released, and hence onto a macroscopic
structure in which ⟨a1⟩ ≃ ⟨a2⟩.
BP and SiSe do preserve the magnitude of the ratio ⟨a1⟩/⟨a2⟩

to a large extent, which is consistent with their values of EC
equal to 5519 ± 75 K and 730 ± 221 K, respectively (Table 1).
As seen qualitatively on Figures 3a and b, these compounds do
preserve their original two-dimensional Pnma structure until
they melt. On the other side of the energy scale set by EC, PbS
has ⟨a1⟩/⟨a2⟩ = 1, which is consistent with its magnitude of EC
= 0 K. All other materials listed in Table 2 are predicted to
undergo a 2D order−disorder transition before melting.
Indeed, GeS displays a drastic decrease of ⟨a1⟩/⟨a2⟩ in

between 300 and 1000 K (its magnitude drops from 1.156 ±
0.106 down to 1.048 ± 0.541). This significant drop in between
these two temperatures is consistent with a transition
temperature of the order of EC = 653 ± 221 K displayed in
Table 1. Analogously, GeSe has a sharp decrease on ⟨a1⟩/⟨a2⟩,
going from 1.084 ± 0.116 at 300 K, down to 1.016 ± 0.541 at
1000 K. This also means that a two-dimensional order−

Table 2. Evolution of Average Lattice Parameters ⟨a1⟩, ⟨a2⟩, and Their Ratio versus Temperature (T) for 12 × 12 Supercells of
BP and Eight MMs

T (K) ⟨a1⟩ (Å) ⟨a2⟩ (Å) ⟨a1⟩/⟨a2⟩ ⟨a1⟩ (Å) ⟨a2⟩ (Å) ⟨a1⟩/⟨a2⟩

BP SiSe
0 4.628 ± 0.000 3.365 ± 0.000 1.375 ± 0.000 5.039 ± 0.000 3.728 ± 0.000 1.352 ± 0.000
30 4.625 ± 0.050 3.364 ± 0.033 1.375 ± 0.028 5.029 ± 0.058 3.733 ± 0.077 1.347 ± 0.042
300 4.628 ± 0.181 3.368 ± 0.103 1.374 ± 0.096 5.054 ± 0.187 3.748 ± 0.272 1.348 ± 0.140
1000 4.632 ± 0.388 3.384 ± 0.207 1.369 ± 0.198 5.090 ± 1.298 3.861 ± 1.302 1.318 ± 0.780

GeS GeSe
0 4.337 ± 0.000 3.739 ± 0.000 1.160 ± 0.000 4.473 ± 0.000 4.074 ± 0.000 1.098 ± 0.000
30 4.338 ± 0.069 3.744 ± 0.044 1.159 ± 0.032 4.475 ± 0.071 4.073 ± 0.051 1.099 ± 0.031
300 4.351 ± 0.228 3.764 ± 0.148 1.156 ± 0.106 4.474 ± 0.266 4.128 ± 0.197 1.084 ± 0.116
1000 4.478 ± 1.304 4.271 ± 0.960 1.048 ± 0.541 4.942 ± 1.349 5.019 ± 1.386 1.016 ± 0.541

GeTe SnS
0 4.411 ± 0.000 4.231 ± 0.000 1.043 ± 0.000 4.329 ± 0.000 4.157 ± 0.000 1.041 ± 0.000
30 4.414 ± 0.052 4.230 ± 0.055 1.043 ± 0.026 4.330 ± 0.061 4.159 ± 0.050 1.041 ± 0.027
300 4.408 ± 0.199 4.266 ± 0.175 1.033 ± 0.089 4.258 ± 0.218 4.245 ± 0.190 1.003 ± 0.096
1000 4.479 ± 0.720 4.415 ± 0.645 1.014 ± 0.311 4.837 ± 1.109 4.704 ± 1.171 1.028 ± 0.492

SnSe SnTe
0 4.702 ± 0.000 4.401 ± 0.000 1.068 ± 0.000 4.681 ± 0.000 4.586 ± 0.000 1.021 ± 0.000
30 4.695 ± 0.075 4.406 ± 0.060 1.066 ± 0.032 4.686 ± 0.060 4.587 ± 0.057 1.022 ± 0.026
300 4.687 ± 0.282 4.468 ± 0.254 1.049 ± 0.123 4.630 ± 0.219 4.665 ± 0.220 1.008 ± 0.094
1000 4.826 ± 0.595 4.585 ± 0.474 1.052 ± 0.238 4.908 ± 0.875 4.781 ± 0.854 1.026 ± 0.366

PbS
0 4.350 ± 0.000 4.349 ± 0.000 1.000 ± 0.000
30 4.355 ± 0.049 4.354 ± 0.044 1.000 ± 0.021
300 4.372 ± 0.179 4.371 ± 0.174 1.000 ± 0.081
1000 4.416 ± 0.397 4.427 ± 0.375 1.002 ± 0.175
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disorder transition is occurring roughly after 300 K. Table 1
predicts a transition temperature close to 300 K (EC = 220 ±
76 K). We will be able to determine the exact transition
temperature for GeS and GeSe later on.
Additionally, SnS has EC = 63 ± 0 K for SnS, which implies

that a significant drop on ⟨a1⟩/⟨a2⟩ must occur in between 30
and 300 K. Accordingly, Table 2 points to a decrease from
1.041 ± 0.021 down to 1.003 ± 0.096 in between those
temperatures.
According to Table 1, GeTe and SnSe should transition at

temperatures in between 30 and 300 K. Both compounds do
show a decrease of ⟨a1⟩/⟨a2⟩ in between 30 and 300 K on the
second significant digit, but that decrease is not as drastic as the
one registered on the other compounds. Each calculation
leading to a data point in Table 2 consumed about one month
of uninterrupted computing, and it appears as if these two
compounds may still require additional MD steps to reach a
smaller ratio. As far as we know, the MD tool we employ does
not offer a numerically sound way to restart a MD calculation.
Nevertheless, degeneracies of the ground state lead to
mechanical instability at finite temperature,38 and we cannot
think of a physical mechanism that will alter the assumption
that GeTe and SnSe will continue to reduce their ratio ⟨a1⟩/

⟨a2⟩ on MD runs performed over longer periods of time. The
Potts model, to be introduced later on, will also help us in
bringing all numerical results onto a coarse model that
describes all the phenomena observed in our MD calculations.
SnTe presents a different kind of numerical challenges. This

material has a ratio of ⟨a1⟩/⟨a2⟩ = 1.02 at 0 K and a barrier EC

roughly larger than 1 meV. EC is (roughly) the energy
difference per unit cell among the ordered and the disordered
phases one is attempting to resolve. This numerical
consideration makes it increasingly challenging to do better
on this material: its magnitude of EC is minuscule in
comparison with the other materials listed in Table 1.
A final physical consideration must be added to the

discussion of SnS, SnSe, SnTe, and PbS on Table 2: lattice
constants loose their meaning on a molten (i.e., noncrystalline)
phase, so the increase on ⟨a1⟩/⟨a2⟩ at 1000 K with respect to
their magnitude reported at 300 K on these compounds should
not be given a heavy weight.
Table 2 continues to build the evidence toward a generic 2D

order−disorder transition, and we next report the transition
temperature Tc for GeS and GeSe through a study of the
evolution of energetics and order parameters with an increased
temperature resolution.

Figure 5. Top to bottom: Configurational energy ⟨U⟩, its thermal derivative, ⟨a1⟩/⟨a2⟩, and its thermal derivative for (a) GeS and (b) GeSe. (c)
These MD results can be explained up to the two-dimensional order−disorder transition with a q = 4 Potts model, whose predictions for a 8 × 8 (60
× 60) supercell are shown by solid (dashed) curves. (d) Atomistic trajectories for GeS and GeSe show the onset of the order−disorder transition,
and disordered structures at higher T. (Actual standard deviations for Δ⟨U⟩/ΔT and ⟨a1⟩/⟨a2⟩ are five times larger than those seen on these
subplots, and 20 times larger for the Δ(⟨a1⟩/⟨a2⟩)/ΔT subplot).
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Energetics and Order Parameter as a Function of
Temperature. In Figure 5a and b we address the thermal
evolution of the energy and the order parameter for GeS and
GeSe with increased resolution. To proceed with celerity, these
MD calculations were performed on periodic 8 × 8 supercells.
The total energy, averaged from 500 to 1000 fs at a given
temperature is labeled ⟨E(T)⟩, and it has kinetic and
configurational (i.e., potential) energy contributions. According
to the equipartition theorem, the kinetic energy is proportional
to temperature, with c the proportionality constant. This way,
the configurational energy ⟨U(T)⟩ displayed for GeS and GeSe
in Figure 5a and b is ⟨U(T)⟩ = ⟨E(T)⟩ − cT. The similar trends
on ⟨U(T)⟩ and its thermal derivative obtained for two different
MMs provides yet additional proof of the generality of the
phenomena shown in Figures 1 and 2 that leads to the two-
dimensional order−disorder transition. In a manner consistent
with Figure 3, atomistic trajectories from MD calculations are
given in Figure 5d for GeS and GeSe at increasing
temperatures. Incipient reassignments of nearest neighbors at
the onset of the order−disorder transition are shown as well.
Phase transitions lead to drastic changes in the specific heat

Cp ≡ d⟨E(T)⟩/dT = d⟨U(T)⟩/dT + c at zero pressure.49

⟨U(T)⟩ is a monotonically increasing function of temperature,
and it has two marked changes of slope that lead to two peaks
on the finite-difference temperature derivative Δ⟨U(T)⟩/ΔT in
Figure 5a and b. These two peaks correspond to phase
transitions from a crystalline onto a disordered two-dimen-
sional phase, and from the disordered two-dimensional phase
onto a molten phase, respectively. The focus of this manuscript
is on the 2D order−disorder transition. According to Figure 5a
and b, the transition temperature Tc is 510 K for GeS (Z̅ = 24),
and at 382 K for GeSe (Z̅ = 33). There is a proportionality
among Tc obtained from MD calculations (red vertical lines in
Figure 5) and EC/KB from Table 1 (shown in a green vertical
lines in Figure 5a and b), so that Car−Parrinello MD results do
validate the basic intuition drawn from Figures 1 and 2.
The order parameter ⟨a1⟩/⟨a2⟩ for GeS and GeSe transitions

onto a value close to unity at Tc, a fact that can be better
appreciated in the numerical derivative plots Δ(⟨a1⟩/⟨a2⟩)/ΔT
shown as the lowermost subplots in Figure 5a and b. Figure 5
reproduces the magnitudes of this ratio reported in Table 2 at
0, 30, 300 and 1000 K on larger supercells. Figure 5a and b
continue to provide further numerical validation to the
hypotheses set forth in discussing Figures 1 and 2 and
demonstrate in an even more convincingly manner the
unavoidable disordered nature of MMs at finite temperature.
The two-dimensional order−disorder transition is quite

relevant for practical room-temperature applications based on
MMs, and a model that describes it is provided next.
2D Order−Disorder Transition and Potts Model. Starting

with a crystalline structure in which all unit cells have an A1
(→) decoration, a local energy penalty equal to J (= EC) is
given to a neighboring unit cell that reassigns two bonds in
acquiring the B1 (↓) or the B2 (↑) decoration. A direct
transition from a A1 (→) to a A2 (←) decoration requires
reassigning four bonds and is thus given an energy penalty
equal to 2J. This prescription leads to a 2D (clock) Potts model
with q = 4 states24 whose dynamical behavior is characterized
by an in-plane spin Hamiltonian on a square lattice with the
following nearest-neighbor coupling:

∑ θ θ̂ = − −
⟨ ⟩

H J cos( )
i j

i j
, (4)

In previous equation, θi and θj can take any of the four (q = 4)
values 0 (→), π/2 (↑), π (←), or 3π/2 (↓). At low
temperatures, the transition with energy penalty J becomes
dominant, and the system behaves as if there was just a single
coupling. Figure 5c displays the predictions from the model,
which reproduces the temperature dependence of the
configurational energy ⟨U⟩ and ⟨a1⟩/⟨a2⟩ from Car−Parrinello
MD, a remarkable agreement in light of the simplicity of the
model and the complexity of the ab initio calculations: Potts
model provides an appealingly simple physical picture for the
2D order−disorder transition.
It is impossible to sample larger cells with the ab initio

method, so Potts model was employed to increase sampling
statistics which leads to domain sizes shown in Figure 6 on

supercells containing 60 × 60 unit cells, corresponding to an
area of 30 × 30 nm2. At T = 1.3J/kB it is highly unlikely to see
domains with arrows pointing in opposite directions along the
same direction due to the higher energy cost required to create
such configuration, and intriguing “vortex” configurations can
be observed as well.
Structural disorder implies the existence of electronic

disorder. Indeed, the electronic wave functions below and
above the Fermi energy seen in Figure 7 for disordered 2D
SnSe exhibit drastic changes at room temperature when
contrasted with their appearance on a crystalline structure at
0 K.
Valleytronics, piezoelectricity, and shift photovoltaics appli-

cations16−18 have been predicted for fully crystalline phases; the
results provided here thus constrain the choice of materials for
these applications near room temperature. At a fundamental
level, it will be interesting to explore how these predictions
become altered in the presence of 2D disorder, something that
is the subject of forthcoming work.

Conclusion. In summary, the ridged structure of black
phosphorus and of layered monochalcogenides leads to 2D
disorder as in-plane nearest-neighbors become reassigned at
finite temperature. A second transition from this disordered 2D
lattice onto a gas phase occurs at a larger temperature, with the
remarkable exception of a BP monolayer which has no visible

Figure 6. Potts model is employed to ascertain domain sizes at
experimentally relevant scales. A vortex structure seen on the
disordered state has been highlighted as a zoom-in, and unrelaxed
atomistic models are attached to highlight the inherent atomistic
disorder.
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signs of breakdown at 1000 K so that it will directly melt from
the 2D crystalline structure. Transition temperatures equal to
510 and 382 K were determined for GeS and GeSe,
respectively. The phenomena was demonstrated with state-of-
the-art large-scale molecular dynamics calculations on periodic
supercells, with all relevant interactions computed at the ab
initio level.
An analogy among bond reassignment and four orientations

of an arrow leads to a minimal description of the observed
phenomena by a Potts model that has J = EC as its single
parameter. This model describes the full-scale energetics
through the 2D order−disorder transition remarkably well.
The generic results presented here call to investigate the

properties recently predicted on crystalline samples (valley-
tronics, shift-current photovoltaics, and piezoelectronics)15−18

as 2D disorder sets in. Having Tc = 510 K, GeS monolayers
appear as the proper crystalline material platformalready
available in the bulk formfor the pursuit of MM-based
applications that require crystallinity of the 2D lattice at room
temperature. These results apply to freestanding monolayers,
and it may be possible to raise the magnitude of the transition
temperature Tc, through thermal coupling to a substrate or in
the bulk.
The predictions contained here illustrate classic results from

the theory of phase transitions and disorder in two-dimensions
at work in this novel family of 2D atomic materials.
Methods. Density-functional theory calculations with the

Perdew−Burke−Ernzerhof (PBE)50 and the van der Waals
Berland-Per Hyldgaard (BH)51 exchange-correlation func-
tionals were carried out on unit cells containing four atoms
to determine the elastic energy barrier EC in Table 1, with the
VASP41,42 (PBE, Method 1) and SIESTA43 codes (PBE,
Method 2; and BH, Method 3). This required a dedicated
deployment of pseudopotentials for the SIESTA code for most
of the chemical elements employed in this work.52 According to
ref 51, the BH pseudopotential produces accurate lattice
constants and bulk moduli of layered materials and tightly
bound solids.
All calculations on single unit cells leading to EC on Table 1

were performed with a 18 × 18 × 1 k-point sampling. SIESTA
calculations had a large mesh cutoff (used for computing the
potential energy on a real-space grid) of 300 Ry. In addition,
the electronic density was converged down to 5 × 10−6.
Car−Parrinello MD calculations with Method 3 at constant

temperature and zero pressure were carried out with the

SIESTA code at temperatures of 30, 300, and 1000 K for 1000
steps (with a 1 fs time step) on periodic supercells containing
576 atoms. These calculations employed a single k-point, a
reduced mesh cutoff of 200 Ry, and a reduced tolerance on the
electronic cycle of 10−4, and require about a full month to end
for a given temperature, running on 128 processors.
A more detailed analysis of the total energy as a function of

temperature for GeS and GeSe monolayers was performed on
smaller periodic 8 × 8 supercells containing 256 atoms, still
employing a single k-point, a reduced mesh cutoff of 200 Ry,
and a reduced tolerance on the electronic cycle of 10−4.
Calculation of an individual data point on Figures 5(a-b)
accrues 2 weeks running on 128 processors.
The average lattice constants ⟨a1⟩ and ⟨a2⟩ were obtained for

nine compounds from the distances among each of the four
atoms on a given unit cell with respect to the position of said
basis atoms in neighboring unit cells once thermal equilibrium
was reached, leading to an average over 12 × 12 × 500
individual values from SIESTA calculations with BH
pseudopotentials that is reported up to three significant digits
in Table 2. By definition ⟨a1⟩ = a1 and ⟨a2⟩ = a2 on the
crystalline structures at 0 K, whose values were then obtained
from single unit cell calculations. Values of a1 and a2 at 0 K are
consistent with these shown in Table 1, which were in turn
obtained as averages at zero temperature over the three
different computational methods. ⟨a1⟩ and ⟨a2⟩ are also
indicators of the numerical precision being achieved in our
MD calculations.
All SIESTA calculations reported on this paper were

performed using standard basis sets with an energy shift of
0.01 eV; this choice was made because that the lattice constants
for BP agree among SIESTA and VASP reasonably well: (4.635,
3.302), (4.625, 3.345), and (4.627, 3.365) Å from VASP with
PBE pseudopotentials, SIESTA with PBE pseudopotentials, and
SIESTA with Berland−Per Hyldgaard pseudopotentials,
respectively.
Monte Carlo calculations of the configurational energy and

the order parameter as predicted from the Potts model were
carried on supercells of increasing size with an in-house
algorithm.

Figure 7. Structural disorder creates electronic disorder: The states (a) below and (b) above the Fermi level for SnSe at 0 K. State (c) below and (d)
above the Fermi level for SnSe corresponding to the snapshot at 300 K shown in subplot (e).
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ACS Nano 2014, 8, 4033−4041.
(4) Koenig, S.; Doganov, R.; Schmidt, H.; Neto, A.; Özyilmaz, B.
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