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Abstract—The electronic properties of few-layer graphene
grown on the carbon face of silicon carbide (SiC) are found to be
strongly dependent on the number of layers. The carrier mobility
is larger in thicker graphene because substrate-related scattering
is reduced in the higher layers. The carrier density dependence of
the mobility is qualitatively different in thin and thick graphene,
with the transition occurring at about 2 layers. The mobility in-
creases with carrier density in thick graphene, similar to multi-
layer graphene exfoliated from natural graphite, suggesting that
the individual layers are still electrically coupled in spite of reports
recording non-Bernal stacking order in C-face grown graphene.
The Hall coefficient peak value is reduced in thick graphene due
to the increased density of states. A reliable and rapid characteri-
zation tool for the layer number is, therefore, highly desirable. To
date, atomic force microscopy height determination and Raman
scattering are typically used since the optical contrast of graphene
on SiC is weak. However, both methods suffer from low throughput.
We show that the scanning electron microscopy (SEM) contrast can
give similar results with much higher throughput.

Index Terms—Electrical properties, graphene, scanning electron
microscopy (SEM), silicon carbide (SiC) substrate.

I. INTRODUCTION

GRAPHENE is a 2-D atomic layer of carbon atoms form-
ing a honeycomb crystal lattice [1]. The high intrinsic

mobility in graphene [2], [3] makes it an attractive material
for high-speed electronics, especially RF circuits. Thin films of
graphene can be formed by exfoliation of bulk graphite [4], by
CVD growth on certain metals [5], [6], or by epitaxial growth on
silicon carbide (SiC) by high-temperature decomposition of its
surface and sublimation of Si [7]– [12]. Graphene grown on SiC
has the advantages of uniform coverage and a coherent structure
at wafer scale. None of these advantages are feasible—at least
up to date—in the case of exfoliated graphene, and structural
coherence is lost in the polycrystalline graphene CVD films at
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wafer scale. Furthermore, graphene grown on semi-insulating
SiC does not have to be transferred to another insulating sub-
strate, as is the case with CVD grown graphene on metals.
Therefore, graphene grown on SiC has recently become the
subject of intense research.

For exfoliated graphene, the number of layers can be reli-
ably determined by the light reflectance method, based on the
optical contrast between graphene and the underlying Si/SiO2
substrate [13]–[15]. The method relies on interference enhance-
ment due to the oxide layer, which needs to be close to 90, 280
nm, etc., in height. In epitaxial graphene grown on SiC, graphene
is directly sitting on SiC without any oxide, and the contrast is
very poor (nearly invisible to the eye). Low-energy electron mi-
croscopy [16] can determine the graphene layer number, but
the sample size and the field of view are limited and the mea-
surements are time consuming. In this study, we report that the
scanning electron microscopy (SEM) contrast can provide infor-
mation on the number of layer accurately, and the entire wafer
can be mapped quickly. We correlate the SEM contrast with
atomic force microscopy (AFM) height measurements and the
Raman G-band position, showing consistency across all three
methods. The electronic properties (Hall mobility and Hall co-
efficient) are measured for different thicknesses, and we find
important qualitative and quantitative differences in thin and
thick graphene.

II. EXPERIMENT

We grew graphene on the C-terminated face of quarter wafer
pieces of high purity semiinsulating 4H (0 0 0 1̄) SiC wafers
(2-in diameter) that had a chemically mechanically polished
epitaxy-ready surface on their C polar face. Graphene growth
took place in a ultrahigh vacuum chamber (base pressure of ∼
3 × 10−10 torr) equipped with a custom-designed, inductively
heated hot-zone comprising a cylindrical graphite susceptor. The
SiC pieces were loaded on a graphite carrier and then loaded
via a load lock into the hot zone area. After degassing at 810 ◦C
for 21 min in vacuum (P < 1 × 10−8 torr), the SiC was cleaned
mainly from oxide contamination by annealing at 810 ◦C un-
der disilane flow (20% disilane in He) for 10 min. After this
cleaning step, the SiC wafer was annealed at 1450 ◦C for 2 min
under Ar flow at a pressure of 3.2 × 10−4 torr and then was al-
lowed to cool down in Ar. Subsequently, metal alignment marks
were formed by liftoff, and graphene Hall bar structures were
fabricated by photoresist patterning and O2 plasma etching.
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Fig. 1. (a) SEM and (c) AFM images of graphene grown on C-face SiC. (b) and (d) Profile of the SEM intensity and AFM height across the channel. Here, the
SEM intensity and the AFM height are the average of signal along the channel direction in the rectangle region as marked in the images.

Following that, SEM, AFM, and Raman characterizations were
performed, and then source/drain and sensing terminals were
formed using Ti/Pd/Au metallization and liftoff. The SEM mea-
surements were taken at 3 kV. The AFM images were taken in
the tapping mode. Silicon nitride gate dielectric was deposited
by plasma-enhanced chemical vapor deposition at 400 ◦C [17].
Top gate electrodes were then formed using Ti/Pd/Au. Hall mo-
bility and Hall coefficient were measured using magnetic field
of ±2 T at temperature of 300 and 4.2 K.

III. RESULTS

Fig. 1(a) shows an SEM image of a graphene Hall bar on
the C-face of SiC. The dark region is graphene and the bright
region is the exposed SiC substrate after the graphene has been
etched away using O2 plasma. The profile of SEM intensity
across the Hall bar channel is shown in Fig. 1(b). The SEM
intensity in the graphene channel is lower than the intensity on
the SiC substrate because graphene is more conductive than SiC
substrate and fewer secondary electrons are reflected back to
the secondary electron detector. Fig. 1(c) shows an AFM image
of the same Hall bar and Fig. 1(d) shows the corresponding
height profile across the Hall bar. For this Hall bar, the graphene
channel appears about 1.5 nm higher than the substrate. Fig. 2
shows the AFM height versus SEM contrast for 26 Hall bars.
Here, the AFM height is defined as the height difference between
the channel and the nearby substrate, and the SEM contrast is
defined as (Isub − Igr)/Isub , where Igr is the SEM intensity
in the graphene channel and Isub is the SEM intensity on the

Fig. 2. AFM height versus SEM contrast for 26 graphene Hall bars.

nearby substrate. There is a strong correlation between AFM
height (and, thus, layer number) and SEM contrast. The thicker
the graphene, the higher the SEM contrast due to the increased
conductivity of the graphene layer.

According to the “C-corrugated” model in [10], the distance
between the first graphene layer and the silicon plane in the
interface layer is 0.325 nm for graphene on C-face of SiC.
The distance between graphene layers in graphite was reported
as 0.335 nm [18]. Assuming the interfacial layer composition
and geometry follows the “C-corrugated” model and the dis-
tance between subsequent graphene layers are similar to those
in graphite, we can estimate the number of graphene layers
based on the AFM height, as marked in Fig. 2. Based on the
correlation between the AFM height and SEM contrast, we can
establish the correlation between SEM contrast and the number
of graphene layers, as marked in Fig. 2.
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Fig. 3. (a) Raman spectra of graphene Hall bars on SiC with SEM contrast
from 0.36 to 0.56. (b) Raman G-band position versus SEM contrast for the
above graphene Hall bars.

Raman spectroscopy was additionally used to characterize
the Hall bars. Fig. 3(a) shows Raman spectra for graphene Hall
bars with SEM contrast ranging from 0.36 to 0.56, which cor-
responds to about 1 to 6 graphene layers. Both G and 2D-bands
were fitted with Lorentzians and the peak area, width, and po-
sition determined. The 2D-band area and the G band position
are most affected by the layer number. We found that the 2D
area increases with layer number, while the G band energy de-
creases. In Fig. 3(b), we plot the Raman G band position versus
SEM contrast (and, thus, layer number). The G band position
decreases by 8 cm−1 between 1 and 6 layers. In graphene grown
on SiC, the first layer from the SiC interface is usually heavily
doped by the substrate [19], [20]. As the graphene gets thicker,
the top layer is further away from the SiC interface and, thus, a
larger portion of the channel is less doped. Therefore, the energy
of the G-band decreases, consistently with studies of doping in
exfoliated graphene [21]. From the correlation between SEM
contrast and Raman G-band position, we establish a correlation
between Raman G-band shift and graphene layer number, as
marked in Fig. 3. Note that at layer 6, the Raman G-band posi-
tion has reached 1584 cm−1 , which is generally considered to
be the value for undoped graphene.

The number of layers of graphene also significantly influ-
ences the electrical properties. Fig. 4 shows the Hall coefficient
versus top gate voltage for Hall bars with SEM contrast from
0.36 to 0.49 (about 1 to 4 layers) measured at 4.2 and 300 K. The

Fig. 4. (a) Hall coefficient of graphene Hall bars with SEM contrast from 0.36
to 0.49 measured at 4.2 and 300 K. (b) Measured Hall coefficient peak height
versus SEM contrast. (c) Calculated Hall coefficient peak height versus layer
number for graphenes with Δ = 80 meV and Δ = 100 meV at 4.2 and 300 K.

Hall coefficient is defined as RH = VH /IH B, where VH is the
measured Hall voltage, IH is the constant source current, and B
is the applied magnetic field. Fig. 4(b) shows the Hall coefficient
peak height versus SEM contrast. As the graphene layer num-
ber increases, the Hall coefficient peak is reduced significantly.
This can be explained by the following considerations. Near
the Dirac/neutrality point, electron and hole puddles can form
due to variations of the surface electrostatic potential [22], [23].
If we assume that the area of the hole and electron puddles is
equal in size and simplify the spatial electrostatic potential to a
step function with the peak to peak height of ±Δ, the electron
and hole carrier densities can be expressed by the following
equations:

ne(EF ) =
∫ ∞

−Δ

1
2
D(E + Δ)f(E)dE

+
∫ ∞

Δ

1
2
D(E − Δ)f(E)dE (1)
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nh(EF ) =
∫ −Δ

−∞

1
2
D(−E − Δ)[1 − f(E)]dE

+
∫ Δ

−∞

1
2
D(−E + Δ)[1 − f(E)]dE (2)

where EF is Fermi level and f(E) is the Fermi–Dirac distribu-
tion function. The density of states in single-layer graphene is
DSL(E) = 2E

/
[π(h̄νF )2 ] and the one in multilayer graphene

with coupled layers is DML coupled(E) = 2m
/
(πh̄2), where m

is the effective mass of the graphene [24]. The ambipolar Hall
coefficient is given by [25] RH = (nhμ2

h − neμ
2
e )/e(nhμh +

neμe)2 . Assuming that the electron and hole mobility are simi-
lar, this equation can be simplified to

RH =
nh − ne

e(nh + ne)2 . (3)

Based on (1)–(3), we can calculate the Hall coefficient as a
function of the Fermi energy and extract the Hall coefficient
peak height. Fig. 4(c) shows the calculated Hall coefficient peak
height as a function of graphene layer numbers with Δ = 80
meV and Δ = 100 meV at 4.2 and 300 K. As the graphene
layer number increases, the effective mass and density of states
increases, resulting in lower Hall coefficient peak values. As
the temperature increases, the Hall coefficient peak value also
decreases, due to the thermal broadening in Fermi–Dirac dis-
tribution. These trends were indeed observed in the measure-
ment shown in Fig. 4(b). Note that the Hall coefficient peak
value is also influenced by the variation in the electrostatic po-
tential. The larger the electrostatic potential, the lower the peak
height, due to the larger carrier density induced by the additional
electrostatic charges. Moreover, even in uncoupled layers, the
density of states of multilayer graphene will still increase with
increasing number of layers, which would result in a reduced
Hall coefficient peak height.

Finally, the mobility of the graphene channel is also influ-
enced by the graphene layer number. Fig. 5 shows the Hall
mobility as a function of carrier density for graphene Hall
bars with SEM contrast of 0.36, 0.42, and 0.49, which cor-
responds to about 1 layer, 2 layers, and 4 layers, respectively.
The carrier density n was extracted from the Hall voltage VH :
n = IH B/e |VH |, where IH is the current, B is the magnetic
field, and e is the electron charge. We can see that as the graphene
layer number increases, the carrier density dependence of the
Hall mobility changes. For thin graphene (∼1 layer), the mo-
bility decreases with increasing carrier density, while for thick
graphene (∼4 layers), the mobility increases with increasing
carrier density. For medium thickness graphene (∼2 layers), the
carrier density dependence is in between these aforementioned
two cases, i.e., nearly independent of carrier density. This can be
explained by the difference of the density of states in single-layer
graphene and multilayer graphene. At low temperatures, the
dominant scattering mechanism is Coulomb scattering by im-
purities and short-range scattering by defects. The overall mobil-
ity can be found using Matthiessen’s rule μ−1

total ≈ μ−1
sr + μ−1

C ,
where μsr is the mobility limited by short-range scattering and

Fig. 5. Hall mobility as a function of carrier density for graphene Hall bar
devices with SEM contrast of 0.49, 0.42, and 0.36 measured at 4.2 and 300 K.

μC is the mobility limited by Coulomb scattering. In single-
layer graphene, the density of states is proportional to Fermi
energy DSL(E) ∝ E, which will result in μsr ∝ 1/n and μC is
constant, thus the overall mobility at low temperature decreases
with increasing carrier density [26]. For multilayer graphene,
however, the density of states is constant, which results in a
constant μsr and μC ∝ n, thus the overall mobility at low tem-
perature increases with increasing carrier density [27]. When
there is a mixture of mono and multilayers, the carrier density
dependence will be in between these two extremes, i.e., nearly
independent of carrier density.

The mobility increase with carrier density in multilayer
graphene indicates the presence of layer to layer coupling in
graphene grown on SiC, and possibly a parabolic band structure
just like in exfoliated few-layer graphene. This would be con-
sistent with band structures measured by angle-resolved pho-
toemission spectroscopy (ARPES) for 1 to 4 layers of graphene
grown on Si-face SiC [28]. For thicker graphene grown on the
C-face of SiC (11 layers), however, it was reported that the
ARPES showed linear band structure [20], possibly due to the
increased sensitivity of ARPES to the top 3–4 surface layers.
Most likely, however, there is a coexistence of coupled and un-
coupled layers and variable layer stacking that is dependent on
the condition of the synthesis.

Importantly, as the graphene layer number increases, the mo-
bility increases as well (for example at carrier density of 8.5
× 1012 cm−2 , the mobility increases from ∼900 cm2 /V·s for
1 layer to ∼3100 cm2 /V·s for 4 layers in our graphene Hall
bars). This should be due to a reduced charged impurity scatter-
ing from the substrate, as the top layers got further away from
the substrate in thicker graphene. As the temperature increases,
the mobility decreases slightly, due to the increase of scattering
from the gate dielectric surface optical phonons and graphene
phonons [29].

IV. SUMMARY

In summary, we found that there is strong correlation between
SEM contrast, AFM height, Raman G-band position, Hall co-
efficient peak height, and Hall mobilities for graphene grown
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on C-face SiC. As the number of graphene layers increases,
the SEM contrast increases due to the increased conductivity
in the graphene channel, the AFM height increases due to the
added graphene layers, and the position of the Raman G-band
decreases due to the reduced doping in the top graphene lay-
ers. Furthermore, as the number of graphene layers increases,
the Hall coefficient peak height decreases due to the increased
density of states. The carrier density dependence of Hall mo-
bility changes from single-layer-like (mobility decreases with
increasing carrier density) to multilayer-like (mobility increases
with increasing carrier density), similar to the case of exfoliated
graphene. This indicates that there is strong coupling between
layers in graphene grown on the SiC.
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in 1998 and the Ph.D degree in physics and astronomy
from the University of Pennsylvania, Philadelphia, in
2002. His doctoral thesis was focused on local elec-
tronic functionality in carbon nanotube devices, in-
cluding Schottky barriers, interference of electronic
waves near scattering centers, and potential drops as-
sociated with defects.

For two years, he was a Postdoctoral Fellow with
Carbon Nanotechnologies, Houston, TX, prior to be-

coming a Research Staff Member at the IBM T. J. Watson Research Center,
Yorktown Heights, NY, in 2004, where he started to focus on carbon nanotube
optics and electrooptics. He developed carbon nanotube photoconductivity and
electroluminescence, and used these techniques to study the ambipolar elec-
tronic transport regime. With the advent of graphene, he worked on the Raman
spectroscopy of biased graphene devices. His current research interests include
graphene electronics, optoelectronics, and heat conduction.

Phaedon Avouris (SM’10) received the B.S. de-
gree from the Aristotelian University, Thessaloniki,
Greece, in 1968 and the Ph.D. degree in physical
chemistry from Michigan State University, East Lans-
ing, in 1974.

He was a Postdoctoral Researcher at the University
of California, Los Angeles and AT&T Bell Labora-
tories. In 1978, he joined the Research Division of
IBM where he is currently an IBM Fellow and Man-
ager of Nanometer Scale Science and Technology
at the IBM T. J. Watson Research Center, Yorktown

Heights, NY. Over the years, his research has involved a wide variety of subjects
ranging from laser studies of fast phenomena, surface physics, scanning tunnel-
ing microscopy, and atom manipulation. His current research interests include
experimental and theoretical studies of the electrical properties and transport
mechanisms of carbon systems. He has published more than 500 scientific pa-
pers.

Dr. Avouris is a Fellow of the American Academy of Arts and Sciences, the
American Physical Society, the Institute of Physics U.K., the American Asso-
ciation for the Advancement of Science, and other societies. He is the recipient
of many awards including the Irving Langmuir Prize of the American Physical
Society, the Medard W. Welch Award of the American Vacuum Society, the
Richard Feynman Nanotechnology Prize, and the IEEE Nanotechnology Coun-
cil Pioneer Award.


