
PHYSICAL REVIEW B 103, 224102 (2021)

Nearly hyperuniform, nonhyperuniform, and antihyperuniform density fluctuations in
two-dimensional transition metal dichalcogenides with defects

Duyu Chen ,1,* Yu Zheng,2 Chia-Hao Lee ,3 Sangmin Kang,4 Wenjuan Zhu,5 Houlong Zhuang,6

Pinshane Y. Huang ,3 and Yang Jiao 7,2

1Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
2Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

3Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
4Semiconductor Research Center, Samsung Electronics, Hwaseong-si, Gyeonggi-do 445701, South Korea

5Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
6Mechanical and Aerospace Engineering, Arizona State University, Tempe, Arizona 85287, USA

7Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA

(Received 3 February 2021; accepted 18 May 2021; published 1 June 2021)

Hyperuniform many-body systems in d-dimensional Euclidean space Rd are characterized by completely
suppressed (normalized) infinite-wavelength density fluctuations, and appear to be endowed with novel exotic
physical properties. Recently, hyperuniform systems of disordered varieties have been observed in the context of
various atomic-scale two-dimensional (2D) materials. In this work, we analyze the effects of localized defects
on the density fluctuations across length scales and on the hyperuniformity property of experimental samples
of 2D transition metal dichalcogenides. In particular, we extract atomic coordinates from time series annular
dark field-scanning transmission electron microscopy imaging data of 2D tungsten chalcogenides with the
2H structure (Te-doped 2H-WSe2) showing continuous development and evolution of electron-beam-induced
defects, and construct the corresponding chemical-bonding informed coordination networks between the atoms.
We then compute a variety of pair statistics and bond-orientational statistics to characterize the samples. At
low defect concentrations, the corresponding materials are nearly hyperuniform, characterized by significantly
suppressed scattering at the zero wave-number limit (omitting forward/ballistic scattering). As more defects
are introduced, the (approximate) hyperuniformity of the materials is gradually destroyed, and the system
becomes nonhyperuniform even when the material still contains a significant amount of crystalline regions.
At high defect concentrations, the structures become antihyperuniform with diverging (normalized) large-scale
density fluctuations, mimicking those typically observed at the thermal critical points associated with phase
transitions. Overall, the defected materials possess varying degrees of orientation order, and there is apparently
no intermediate hexatic phase emerging. To understand the observed nearly hyperuniform density fluctuations in
the slightly defected materials, we construct a minimalist structural model and demonstrate that the experimental
samples can be essentially viewed as perturbed honeycomb crystals with small correlated displacements and
double chalcogen vacancies. Moreover, the small correlated displacements alone can significantly degrade
hyperuniformity of the perfect honeycomb structure. Therefore, even a small amount of vacancies, when coupled
with correlated displacements, can completely destroy hyperuniformity of the system.

DOI: 10.1103/PhysRevB.103.224102

I. INTRODUCTION

Hyperuniformity is a recently introduced novel concept
that provides a unified framework to categoriz crystals, qua-
sicrystals, and certain unusual disordered systems [1–3].
Hyperuniform many-body systems in d-dimensional Eu-
clidean space Rd are characterized by completely suppressed
(normalized) density fluctuations at large length scales. In
particular, the static structure factor S(k), which is propor-
tional to the scattering intensity in x-ray, light, or neutron

*Present address: Materials Research Laboratory, University
of California, Santa Barbara, California 93106, USA;
duyu@alumni.princeton.edu

scattering experiments, vanishes in the infinite-wavelength
(or zero-wave number) limit for hyperuniform systems, i.e.,
limk→0 S(k) = 0, where k is the wave number. Here S(k) is
defined as

S(k) ≡ 1 + ρh̃(k), (1)

where ρ is the number density of the system, and h̃(k) is the
Fourier transform of the total correlation function

h(r) = g2(r) − 1, (2)

where g2(r) is the pair correlation function. Note that this def-
inition implies that the forward scattering contribution to the
diffraction pattern is omitted. Equivalently, the local number
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variance

σ 2
N (R) ≡ 〈N2(R)〉 − 〈N (R)〉2 (3)

of these systems associated with a spherical window of radius
R grows more slowly than the window volume (i.e., a scaling
of Rd in d-dimensional Euclidean space) in the large-R limit
[1,3], where N (R) is the number of particles in a spherical
window with radius R randomly placed into the system. Re-
cently, hyperuniformity has been observed in many physical,
biological, and material systems [4–23].

Hyperuniform systems, in particular the disordered vari-
eties, appear to be endowed with novel photonic, phononic,
transport, and mechanical properties, and wave-propagation
characteristics [24–30]. For example, disordered hyperuni-
form dielectric networks were found to possess complete
photonic band gaps comparable in size to photonic crys-
tals, while at the same time maintaining statistical isotropy,
enabling waveguide geometries not possible with photonic
crystals [24,25]. Moreover, disordered hyperuniform patterns
can have nearly optimal color-sensing capabilities, as evi-
denced by avian photoreceptors [31]. In addition, disordered
stealthy hyperuniform two-phase materials and cellular solids
were recently found to possess virtually optimal transport
properties [27,29,30]. The reader is referred to Ref. [3] for
a thorough overview of hyperuniform systems.

Despite the exotic structural characteristics and physical
properties that hyperuniform systems possess, in practice it
is very difficult to find perfect hyperuniform systems of both
ordered and disordered varieties due to the inevitable ex-
istence of imperfection [32], except in a few cases where
tailored optimization techniques are designed and deployed to
fabricate perfect hyperuniform materials [33–37]. Therefore,
it is important to systematically investigate how various types
of imperfections affect hyperuniformity and the associated
physical properties of the systems. In the past, the inves-
tigation of the effect of imperfections on the physical and
structural properties of crystals is well documented [38–40].
The effects of imperfections/defects on hyperuniformity have
also been extensively investigated theoretically in the context
of perturbed lattices, e.g., see Refs. [32,41–44], and refer-
ences therein. Recently, in a seminal study, using various
theoretical models, Kim and Torquato [32] demonstrated that
while thermal excitation and point defects such as vacancies
and interstitials destroy hyperuniformity, uncorrelated random
displacements preserve hyperuniformity, but could change the
class of hyperuniformity. To quantify the degree of hyperuni-
formity of real systems, the hyperuniformity index [32,45–47]

H ≡ S(k → 0)/S(kmax) (4)

based on the structure factor S(k) is often employed, where
kmax is the position of the largest peak in the Fourier space.
We note that for most practical purposes effective hyperuni-
form systems with H � 10−4 [32,45–47] behave essentially
the same as perfect hyperuniform systems. However, system-
atic study of how the introduction of imperfections affect
hyperuniformity of real experimental systems, in particular
atomic-scale low-dimensional materials, is still lacking.

Very recently, disordered hyperuniformity (DHU) has
been observed in the context of various atomic-scale two-

dimensional (2D) materials [48–51]. For example, DHU is
found to arise in patterns of electrons emerging from a quan-
tum jamming transition of correlated many-electron state in a
quasi-2D dichalcogenides, which leads to enhanced electronic
transport [49]. It is also discovered that DHU distribution
of localized electrons in 2D amorphous silica results in
an insulator-to-metal transition in the material, which is in
contrast to the conventional wisdom that disorder generally
diminishes electronic transport [50]. Moreover, Chen and
coworkers [51] have rigorously demonstrated that the intro-
duction of Stone-Wales (SW) topological defects [52] into
honeycomb network structures preserves hyperuniformity of
these systems to a large extent, and the resulting amorphous
structural models capture the salient features of graphene-like
2D materials at low temperatures.

While SW defects are prevalent in graphene-like 2D mate-
rials, other types of defects such as chalcogen vacancies, metal
vacancies, and trefoil defects are dominant in monolayer tran-
sition metal dichalcogenides (TMDCs) such as MoS2 and
WSe2 [53,54]. For example, Lin and coworkers [53] have
elaborated how the local structures evolve as various types of
defects are introduced into MoS2. There are also a few prelim-
inary experimental studies [55–57] examining the evolution
of structures as various types of defects are introduced into
samples of TMDCs.

In this work, we conduct a comprehensive characterization
of the evolution of global structures as defects are gradu-
ally introduced into real experimental samples of TMDCs,
in the context of hyperuniformity. Specifically, we employ
deep-learning algorithms to extract the atomic positions in a
sequence of image frames obtained from annular dark field-
scanning transmission electron microscopy (ADF-STEM),
as the scanning electron probe continuously introduces
defects into a monolayer crystalline 2D transition metal
dichalcogenide alloy, Te-doped 2H-WSe2. We then employ
a multistep procedure to identify and refine the chemical-
bonding informed coordination networks in this evolving
system. Subsequently, we employ a variety of theoretical
and quantitative tools from soft-matter physics, in particular
pair statistics and bond-orientation statistics to quantify the
evolution of global structures. We find that the systems are
nearly hyperuniform at low defect concentrations, and the
(approximate) hyperuniformity is completely destroyed even
when there is still a significant portion of crystalline sites
(specifically, less than 20% defects). No intermediate hexatic
phase are found to exist as the defects are gradually introduced
into the systems, which is distinctly different from the 2D
melting process as temperature increases. Moreover, we gen-
eralize an analytical formula to describe the structure factor
S(k) of crystal with correlated displacements and vacancies.
Using this analytical formula and Monte Carlo simulations,
we demonstrate that the experimental samples in the early
frames can be essentially viewed as perturbed crystals with
small correlated displacements and double chalcogen vacan-
cies. Moreover, our results indicate the level of degradation of
hyperuniformity that one should expect due to the finite exper-
imental measurement precision in real STEM experiments. In
addition, we note that our analysis procedures can be readily
adapted to characterize the structures of other ordered and
disordered two-dimensional materials.

224102-2



NEARLY HYPERUNIFORM, NONHYPERUNIFORM, AND … PHYSICAL REVIEW B 103, 224102 (2021)

The rest of the paper is organized as follows: in Sec. II, we
describe the methods that we employ to extract atomic coordi-
nates and determine chemical bonds between atoms from the
obtained STEM images, as well as the statistical descriptors
that we use to characterize these structures. In Sec. III, we em-
ploy various statistical descriptors to characterize the evolving
global structures of the experimental samples. In Sec. IV, we
present a minimalist structural model of the real experimental
samples in the early frames, and use analytical formula and
Monte Carlo simulations to validate it. In Sec. V, we provide
concluding remarks.

II. METHODS

A. Extraction of atomic coordinates and identification of
chemical-bonding informed coordination networks

We acquire aberration-corrected STEM images of Te-
doped WSe2. In ADF-STEM, an angstrom-scale electron
beam is scanned across the sample, and scattered electrons
are collected as a function of the position of the electron
beam. The material studied is WSe2−2xTe2x where x = 0.06.
The synthesis and TEM sample preparation methods were
previously described in Ref. [54]. Because the Te fraction
is small and the local lattice distortion induced by Te sub-
stitutions (2–4 pm) is below the measurement precision of
these frames (∼15 pm), we do not expect the impact of the
Te to be significant (a schematic of the 2H-WSe2 structure
is shown in Fig. 1), and the sample can be treated as if it
were primarily WSe2. During imaging, beam-induced defects,
primarily vacancies, voids, and local stripes of phase trans-
formations [58], gradually modify the underlying lattice. In
this text, we analyze a 120-frame atomic-resolution movie
to capture the generation and evolution of beam-induced de-
fects. The readers are referred to the Supplemental Material
of Ref. [54] for more details including sample fabrication,
acquisition parameters, and the movie itself. Next, we extract
2D-projected atomic coordinates from the movie using a deep
learning package (AtomSegNet [59]). The extracted atomic
coordinates are further processed to remove possible artifacts
from the imaging and the deep learning treatment, particularly
for the atomic coordinates that are too close to each other.
For example, we merge together any group of atoms that
are within 73.3 pm from each other by averaging over their
coordinates. Since the average shortest projected bond length
is around 190 pm, pairs of atoms within the 73.3 pm threshold
are considered nonphysical and thus merged together. The
mapping from a raw image frame to the extracted atomic
positions is schematically shown in Fig. 2.

To construct chemical-bonding informed coordination net-
works from the final extracted atomic positions, we compute
the distance between each pair of atoms, and use a three-step
procedure to identify and refine the chemical bonds. We first
assign a bond to those pairs with a pair distance smaller than
the cutoff 241.89 pm, which is found to identify the bonds
in the crystalline region relatively well. Next, we add bonds
around the defects by allowing a larger cutoff of 322.52 pm
for any particle with one or zero bonds identified in the first
step. Finally, we limit the maximum number of bonds that any
particle can possess to three and remove the extra bonds by

FIG. 1. A schematic (a) of the 2H-WSe2 monolayer and its pro-
jection (b) when seen from above. Note that the Te-doped 2H-WSe2

monolayer (at low Te concentration can be viewed as effectively the
2H-WSe2 monolayer), when projected from above, is mapped into a
perfect honeycomb lattice (ignoring the local strains introduced by
the Te substitutions, which are small compared to our measurement
precision), with each “particle” in the projected plane possessing
three bonds. Moreover, half of the honeycomb lattice sites are oc-
cupied by the W atoms, and each of the other half sites is occupied
by 2 overlaying Se/Te atoms. Each pair of W sites are separated by
a Se/Te site, and vice versa.

sorting bonds according to the bond length and only keeping
the shortest three bonds for each particle. Visual examina-
tion indicates that overall our procedure generates reasonably
accurate coordination networks that faithfully represent the
actual chemical bonding network.

B. Statistical descriptors

We consider a variety of statistical descriptors that are sen-
sitive in picking up structural information across length scales.
A basic quantity of a point configuration is the aforementioned
pair correlation function g2(r), which is proportional to the
probability density function of finding two centers separated
by distance r [60]. In practice, g2(r) is computed via the
relation

g2(r) = 〈N (r)〉
ρ2πr�r

, (5)

where 〈N (r)〉 is the average number of particle centers that fall
into the circular ring at distance r from a central particle center
(arbitrarily selected and averaged over all particle centers in
the system), 2πr�r is the area of the circular ring, and ρ is
the number density of the system [60,61]. The static structure
factor S(k) is the Fourier counterpart, and for computational
purposes, S(k) is the angular-averaged version of S(k), which
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FIG. 2. A schematic illustrating the mapping from a raw image
(top) of a defected monolayer crystalline transition metal dichalco-
genide obtained using the ADF-STEM technique to the extracted
atomic positions (bottom).

can be obtained directly from the particle positions r j , i.e.,

S(k) = 1

N

∣∣∣∣∣
N∑

j=1

exp(ik · r j )

∣∣∣∣∣
2

(k �= 0), (6)

where N is the total number of points in the system [61–63].
The trivial forward scattering contribution (k = 0) in Eq. (6)
is omitted, which makes Eq. (6) completely consistent with

the aforementioned definition of S(k) in the ergodic infinite-
system limit.

The aforementioned local number variance σ 2
N (R) is an-

other quantity that is often used to characterize density
fluctuations of many-body systems. To compute σ 2

N (R), we
randomly place circular observation windows with radius R
in the system under the constraint that the windows should
fall entirely within the image frame to avoid boundary ar-
tifacts [31,64]. Also, the largest radius of the window that
one can sample must be much smaller than half of the box
length, otherwise density fluctuations are artificially dimin-
ished [11]. We count the number of particles N (R) that fall
into the observation window, which is a random variable.
The variance associated with N (R) is denoted by σ 2

N (R) ≡
〈N (R)2〉 − 〈N (R)〉2, which measure density fluctuations of
particles within a window of radius R.

The bond-orientational order metric Q6 and correla-
tion function C6(r) [65,66] are often used to study the
melting process. Specifically, the order metric Q6 is
defined as

Q6 ≡ |〈�6〉|, (7)

where

�6(ri ) = 1

ni

ni∑
j=1

e6θi j , (8)

and 〈· · · 〉 denotes ensemble average, ni is the number of
neighbors of vertex i located at ri, and θi j is the polar angle
associated with the vector from vertex i to j-th chemically
bonded neighbor of vertex i.

The bond-orientational correlation function C6(r) is de-
fined as

C6(r) ≡ 〈�6(ri )�
∗
6 (r j )〉 | r = |ri − r j |, (9)

where �∗
6 is the complex conjugate of �6. In practice, to

compute C6(r), for each pair of particles located at ri and r j ,
respectively, we compute �6(ri )�∗

6 (r j ), and bin the results
according to the distance r = |ri − r j |. We note that Q6 = 1
and C6(r) = 1 for a perfect honeycomb network; while for
isotropic fluid phase, Q6 ≈ 0 and C6(r) decays with an expo-
nential envelop at large r [65,66]. To avoid artifacts caused by
the image boundaries, we exclude the vertices that are within
certain distance (439.8 pm in this work) from each edge of the
bounding box of the image.

III. STRUCTURAL CHARACTERIZATION OF EVOLVING
GLOBAL STRUCTURE OF DEFECTED

TWO-DIMENSIONAL TRANSITION
METAL DICHALCOGENIDES

We apply the aforementioned scheme to extract atomic
coordinates from different frames of STEM images, as shown
in Fig. 3. We then construct chemical-bonding informed coor-
dination networks using the aforementioned procedures and
the resulting networks are shown in Fig. 3. We note that
crystalline Te-doped 2H-WSe2, an alloyed 2D TMDC mono-
layer, when projected from above onto a 2D plane, is mapped
into a perfect honeycomb lattice and thus hyperuniform, with
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FIG. 3. Extracted atomic coordinates and determined chemical-bonding informed coordination networks overlaid with raw images of
different frames obtained using the ADF-STEM technique.

each “particle” in the projected plane possessing three bonds.
Moreover, half of the honeycomb lattice sites are occupied
by the W atoms, and each of the other half sites is occu-
pied by 2 overlaying Se/Te atoms. Visual examination of the
configurations and the associated networks in Fig. 3 suggest
that the samples in the early frames appear to be primarily
affected by double chalcogen vacancies. The AtomSegNet
[59] identifies any occupied site with significant image inten-
sity as an atom. As a result, it does not distinguish between
metal and chalcogen sites, and it only identifies a site as a
“defect” if there is no atom in projection or the intensity is
significantly weaker than others. For example, although single
chalcogen vacancies are also prevalent [54] in these Te-doped
2H-WSe2 samples, these vacancies still contain single chalco-
gen atoms and will not be identified as defects in the projected
structures. Also, the atomic coordinates in the crystalline
region deviate slightly from the perfect honeycomb crystal,
which might be due to various experimental factors including
(1) detector noise, (2) uncertainties introduced by the deep-
learning algorithm, and (3) instrument instabilities (sample
drift, scanning errors, mechanical vibrations). These factors
limit the measurement precision and accuracy to ∼15 pm.
It is noteworthy that various types of defects such as va-
cancies and interstitials, and correlated displacements may
destroy or degrade hyperuniformity of the structures, as stud-
ied theoretically. In the later frames, large voids begin to
form in the samples. The Te-doped WSe2 sample gradually
evolves from a nearly perfect crystal to a highly defective
crystal due to the damage introduced by the electron beam
used for imaging. The high energy (80 keV) electrons induce
knock-on damage and radiolysis in the sample, producing

vacancies, voids, and local lattice reconstruction. The abil-
ity to image and generate atomic-scale defects allows us to
systematically study how hyperuniformity evolves with de-
fect concentration. In addition, we note that when analyzing
any real experimental samples from images, one is almost
inevitably limited by the finite precision for the determination
of atomic coordinates, which effectively adds random uncor-
related displacements to the particle positions. However, as
previously proven in a theoretical study, random uncorrelated
displacements preserve hyperuniformity, so finite measure-
ment precision should not affect our ability of determining the
particular hyperuniformity property of a given experimental
system.

A. Pair statistics

While previously it has been rigorously demonstrated that
random introduction of even a tiny fraction of vacancies into
a crystal destroys perfect hyperuniformity [i.e., S(k → 0) is
strictly zero] of the crystal, the quantification of the degree
of approximate hyperuniformity of real experimental sam-
ples when vacancies and other types of imperfections are
jointly affecting the structures remains an important problem
to explore, which we address in the following sections. It
is noteworthy that there appear to be correlations between
damage events, which are initially low (when the vacancy
concentration is low) and then increase (e.g., when large
voids begin to form). To characterize the density fluctuations
of the experimental samples across different length scales,
we compute various pair statistics of these samples, and the
results are shown in Figs. 4 and 5. In particular, as the de-
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FIG. 4. Pair statistics associated with different frames of ADF-STEM images in the nearly hyperuniform regime. (a) Structure factor S(k).
(b) Log-log plot of |g2(r) − 1| with a linear fitting (dashed line). (c) Normalized local number variance σ 2

N (R)/R2. The legends in (c) are the
same as those in (a). (d) Hyperuniformity index H .

fects are gradually introduced into the system from frame
0 to frame 20, the magnitudes of the Bragg peaks in S(k)
decrease, which indicates the degradation of the crystalline
order of the system. Moreover, the structure factor S(k) of
the structures in frames 0–10 appear to decrease slightly or
plateau to relatively small values as k approaches 0, indicating
suppressed large-scale fluctuations. On the other hand, S(k) of
frame 20 in Fig. 5 appears to converge to value appreciably
larger than zero as k decreases at small k, showing the de-
struction of hyperuniformity at this point. There are significant
wiggles in S(k) at large k as well in all of these structures,
suggesting short-scale structures in these materials. Also, the
scaling exponent β in |h(r)| = |g2(r) − 1| ∼ 1/rβ increases
from frame 0 to frame 10, i.e., the total correlation function
h(r) decays faster as r increases as defects are introduced into
the system, which is consistent with the increasing disorder
and loss of large-scale structural correlation in the system. In
addition, the normalized local number variance σ 2

N (R)/R2 of
the structures in frames 0–10 decreases slightly as R increases
at large R, indicating (approximate) hyperuniformity of the
structures, while σ 2

N (R) scales as R2 for frame 20, indicating
the loss of hyperuniformity at this point. To quantify the
degree of hyperuniformtiy, we employ the hyperuniformity

index H for the series of structures in different frames by
extrapolating S(k) to k = 0 with a linear fitting of S(k) within
k ∈ [0.0025pm−1, 0.0147pm−1]. We find that H � 10−3 for
the first 10 frames and H > 10−3 for frame 20, suggesting that
the structures in frames 0–10 are nearly hyperuniform and the
(approximate) hyperuniformity is essentially destroyed for the
structure in frame 20. We note that the hyperuniformity index
H is primarily suited for characterizing hyperuniform systems
or those that are not too away from being hyperuniform, and
thus we only compute H for frames 0–20.

For structures in frames 20–40, S(k) plateaus at small k
and converges to finite values as k approaches 0, and σ 2

N (R)
scales as the volume of the observation window (i.e., R2)
as shown in Fig. 5, indicating that the corresponding sys-
tems enter the nonhyperuniform regime. In this regard, these
structures are similar to typical liquids and glasses [3,67]. As
more defects are introduced and large voids begin to appear
beyond frame 60, S(k) of the corresponding structures start
to diverge as k goes to zero, and σ 2

N (R) grows faster than
the window volume (i.e., σ 2

N (R)/R2 is an increasing function
of R), and such structures can be regarded as antihyperuni-
form with hyperfluctuations [3], since they are the antithesis
of a hyperuniform system. Note that antihyperuniform sys-

FIG. 5. Pair statistics associated with different frames of ADF-STEM images in the nonhyperuniform and antihyperuniform regime.
(a) Structure factor S(k). (b) Log-log plot of |g2(r) − 1| with a linear fitting (dashed line). (c) Normalized local number variance σ 2

N (R)/R2.
The legends in (c) are the same as those in (a).
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FIG. 6. Bond-orientational statistics associated with different frames of ADF-STEM images. (a) Bond-orientational correlation function
C6(r) of the frames in the nearly hyperuniform regime. (b) Bond-orientational correlation function C6(r) of the frames in the nonhyperuniform
and antihyperuniform regime. (c) Bond-orientational order parameter Q6. (d) Defect fraction pd .

tems are often observed at thermal critical points, all of
which have fractal structures [3]. Here, antihyperuniformity
is discovered in real disordered atomic-scale 2D materials. In
addition, the total correlation function h(r) decays faster as
r increases as more defects are introduced into the system
beyond frame 20, which is consistent with the increasing
disorder.

B. Bond-orientational statistics

The process of introducing defects into the honeycomb
lattice can also be viewed as the “melting” of hexagonal
2D materials to some extent. It is widely known that 2D
melting of colloidal systems is a two-step crystalline-hexatic-
liquid phase transition, and the bond-orientational correlation
function changes from oscillating around certain constant
to power-law scaling, and then exponential scaling at large
length scale as temperature increases [65,66,68,69]. To inves-
tigate the melting behavior of our experimental system, we
compute the bond-orientational order metric Q6 and bond-
orientational correlation function C6(r), which have been
routinely used to study 2D melting [65,66]. The results of
C6(r) and Q6 are shown in Fig. 6. It can be clearly seen that
C6(r) oscillates around certain constant for all of the inves-
tigated structures, i.e., the scaling behavior does not change,
although that constant decreases as defects are gradually intro-
duced, suggesting decreased orientational order of the system.
Moreover, Q6 also decreases relatively smoothly, which is
consistent with the results of C6(r). We note that Q6 is small
but still much larger than 0 even for the structure in frame
119, which means that there is remaining orientatinal order
in the system, a reflection of the presence of the remaining
crystalline regions in the system. These results indicate that
there is no intermediate hexatic emerging in the “melting” of
2D TMDC monolayer, which is consistent with the fact that
there is no mechanism in the system leading to the formation
of grain boundary and the loss of long-range orientational or-
der. This behavior is different from the 2D melting of colloidal
systems and similar to the observation in structural models of
graphenelike materials where disorder is introduced through
the SW topological defects [51].

To quantify the “perfectness” of the honeycomb lattice
during the damaging process, we compute the defect concen-
tration pd defined as:

pd = 1 − Nc/N0, (10)

where Nc is the number of crystalline sites in a structure (ex-
cluding the region within 439.8 pm of the edges), and N0 is the
number of particles in a reference perfect honeycomb lattice
(if it were to occupy the same region) where the side length of
a hexagon in the perfect crystal is set as the same as the aver-
age bond length of all the crystalline sites in the experimental
structure under consideration. Here we consider a particle to
reside in a crystalline site if the following conditions are met:
(1) this particle has three bonds; (2) the bond length difference
of its longest bond and shortest bond is within certain thresh-
old (set as 36.65 pm here); (3) all of its bond angles are in
the vicinity of 120 degrees (set as 100 ∼ 140 degrees here).
This geometric definition of defect concentration is distinct
from the “real” atomic point defect concentration in the lattice
(for example the number of Se vacancies, Te substitutions, or
antisite defects). Visual examination of identified crystalline
sites in different frames indicates that our procedure produces
reasonably good results consistent with our definition of crys-
talline sites. We note that combining the results in Figs. 4–6,
we find that the (approximate) hyperuniformity is essentially
destroyed when the defect fraction pd is much smaller than
20%, i.e., when the material still contains a significant amount
of crystalline sites, and the structures enter the antihyperuni-
form regime when pd exceeds 40%.

IV. STRUCTURAL MODEL OF DEFECTED
TWO-DIMENSIONAL TRANSITION METAL

DICHALCOGENIDES

As mentioned above, the experimental samples in the early
frames appear to be primarily affected by double chalcogen
vacancies and correlated displacements. To fully understand
the effect of imperfections on the structures, we construct a
simplistic structural model of the experimental samples that
enables us to tune different factors independently and see
the outcomes. Here we consider a simple honeycomb lattice
where each particle is connected to its chemically bonded
neighbors by springs of spring constant K . Specifically, the
energy E of the system is given by

E =
∑

i< j,Hi j=1

Ka2

2

∣∣∣∣ui − u j

a

∣∣∣∣
2

, (11)

where Hi j = 1 indicates that vertices i and j are connected
by a chemical bond, and ui is the vector displacement of
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vertex i from its corresponding reference honeycomb lattice
site. We introduce correlated displacements to the particles in
the honeycomb lattice according to a multivariate Gaussian
distribution:

p(u) ∼ exp

(
− E

kBT

)
=

∏
i< j,Hi j=1

exp

(
− |(ui − u j )/a|2

2σ 2

)
,

(12)

where σ 2 = kBT/(Ka2) is an effective variance associated
with the Gaussian distribution and can be viewed as “ficti-
tious” dimensionless temperature. Here kB is the Boltzmann’s
factor, T is the “fictitious” temperature, and a is the side length
of the hexagon in the original honeycomb lattice. By varying
T , one can effectively vary the variance σ 2. It is noteworthy
that uncorrelated stochastic displacements of crystals preserve
perfect hyperuniformity, and for this reason we employ corre-
lated displacements in our model to account for the loss of
perfect hyperuniformity observed in the relatively defect-free
experimental samples in the first few frames. Experimentally,
correlated displacements can result from as scan distortions,
sample drift, mechanical vibration, noise, and local phase
transitions. However, thermal motion can be excluded from
the potential source of these displacements since the time
scale associated with thermal motion is much shorter than the
STEM image acquisition time, and thus the obtained atomic
positions are time-averaged and the thermal motion informa-
tion filtered out.

Note that introducing correlated displacements in the
above fashion is mathematically equivalent to generating
equilibrium structures at finite positive temperature, which
would allow us to utilize standard Monte Carlo simulations
to obtain perturbed honeycomb lattices with correlated dis-
placements according to Gaussian distribution with different
variance σ 2. Specifically, at each trial move, each vertex is
allowed to randomly move within a prescribed maximal dis-
tance from its old position in each dimension and the trial
move is accepted with the probability

pacc(old → new) = min

{
1, exp

(
− Enew − Eold

kBT

)}
, (13)

where Eold and Enew are the energies of the system before and
after the trial move as defined in Eq. (13). To fully equilibrate
the system, we perform 1000N trial moves, where N is the
number of particles/vertices in the system.

Using this scheme, we generate configurations of displaced
honeycomb crystals with N = 2, 500 particles at different σ 2.
Moreover, to introduce chalcogen vacancies into the displaced
crystal, we randomly remove pN/2 particles at chalcogen sites
according to prescribed vacancy concentration p, where p is
defined as the ratio of double chalcogen vacancies over the
total number of chalcogen sites in the lattice. Representative
configurations at σ 2 = 0.005 with varying p are shown in
Fig. 7. We note that chalcogen sites comprise half of the total
sites in the honeycomb lattice, and every pair of chalcogen
sites is separated by a metal site. We then compute S(k) of
these stochastically displaced configurations with or without
defects. To better compare the results with the experimental
systems, we normalize the distance in our simulated systems
so that the characteristic length scale d0 = 2π/k0 is the same

FIG. 7. Representative configurations of honeycomb crystal with
correlated Gaussian displacements with variance σ 2 = 0.005 at dif-
ferent vacancy concentrations p. (a) p = 0. (b) p = 0.02. (c) p =
0.04.

for the initial experimental frame and the vacancy-free dis-
placed crystal at a given temperature, where k0 is the position
of the first peak.

We find that S(k) of the vacancy-free displaced honey-
comb crystal at σ 2 = 0.005 shown in Fig. 8(a) captures the
salient features of the experimental sample in the initial frame,
which contains relatively few vacancies. Also note here that
correlated displacements already largely degrades hyperuni-
formity even in the absence of vacancies, similar to the effect
of thermal motions [70,71]. Moreover, as more chalcogen
vacancies are introduced into the simulated system, S(k) at
small k further increases as p increases, as shown in Fig. 8(a),
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FIG. 8. Pair statistics of simulated honeycomb lattice with corre-
lated Gaussian displacements with variance σ 2 = 0.005 at different
vacancy concentrations. (a) Structure factor S(k) of the simulated
frames and representative reference experimental frames, and refer-
ence perfect honeycomb lattice. (b) Log-log plot of |g2(r) − 1| with
a linear fitting (dashed line).

indicating the loss of hyperuniformity. In addition, the scaling
exponent β in |h(r)| = |g2(r) − 1| ∼ 1/rβ slightly increases
as p increases, i.e., the total correlation function h(r) decays
faster as r increases as vacancies are introduced into the
system, as shown in Fig. 8(b). These trends are consistent
with those observed in experimental systems, and demonstrate
that the series of experimental samples studied in the early
frames can be essentially viewed as honeycomb crystals with
small correlated displacements and varying concentration of
double chalcogen vacancies. In Fig. 8(a) we also show S(k)
of the reference perfect honeycomb crystal with N = 2, 500
particles in Fig. 7(a), and S(k) is strictly zero in the intervals
between the sharp Bragg peaks.

To further validate our simulation results, we generalize
a previously known analytical formula for S(k) of defective
point process in any space dimension with spatially uncor-
related point vacancies [32] to displaced honeycomb crystals
with double chalcogen vacancies. We note that this formula
was first known for defective crystals [71,72]. Specifically,
following similar procedures in Ref. [32], we derive the gen-

FIG. 9. Structure factor S(k) of honeycomb crystal with corre-
lated Gaussian displacements with variance σ 2 = 0.005 at different
vacancy concentrations obtained from analytical expression (solid
line) and Monte Carlo simulations (dots). (a) p = 0.02. (b) p = 0.04.

eralized formula for S(k) as

S(k) = 1 + (1 − p′)[S0(k) − 1],

= 1 +
(

1 − p

2

)
[S0(k) − 1],

= p

2
+

(
1 − p

2

)
S0(k), (14)

where S0(k) is the structure factor of the vacancy-free
displaced crystal, and p′ = p/2 is the effective vacancy con-
centration in the system, i.e., the ratio of chalcogen vacancies
over the total number of lattice sites. Since in our model
vacancies can only be introduced randomly at chalcogen sites,
strictly speaking the vacancies are not completely spatially
uncorrelated, but we assume that this spatial correlation can be
neglected. We compute S(k) of displaced honeycomb crystal
with p concentration of double chalcogen vacancies using
this analytical formula by plugging in the simulated S0(k) of
vacancy-free displaced crystals. We find that the analytical
results match the directly simulated S(k) of defected displaced
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FIG. 10. Structure factor S(k) of honeycomb crystals at dif-
ferent double chalcogen vacancy concentrations without correlated
displacements.

crystals well, as shown in Fig. 9, which demonstrates that our
assumption is indeed valid.

Because certain correlated displacements of atomic posi-
tions may be due to various experimental measurement errors
rather than intrinsic features of the experimental samples, we
also use computer simulations to investigate the large-scale
structural features of honeycomb crystals with double chalco-
gen vacancies and no correlated displacements. Specifically,
we randomly remove particles at chalcogen sites and compute
the structure factor S(k) of the defected honeycomb crystals
at different double chalcogen vacancy concentrations without
correlated displacements, as shown in Fig. 10. It is noteworthy
that S(k) is relatively flat away from the Bragg peaks associ-
ated with the honeycomb crystals, and the values of S(k) in
these intervals between Bragg peaks are roughly proportional
to the effective vacancy concentration, which is consistent
with previous theoretical predictions [32].

V. CONCLUSION AND DISCUSSION

In this work, we investigated structural features of time
lapse STEM images of 2D TMDCs across length scales
as an electron probe was used to gradually introduce
various types of defects into the 2D materials. In partic-
ular, we quantified density fluctuations and the associated
hyperuniformity/antihyperuniformity property of these de-
fected 2D materials. We find that in the early frames the
chemical bonding-informed coordination network is mainly
influenced by double chalcogen vacancies, and at very low
defect concentrations the corresponding materials are nearly
hyperuniform, as manifested in various pair statistics and
quantified by the hyperuniformity index H . However, as
additional defects are introduced, the (approximate) hyperuni-
formity of the materials is completely destroyed, when there
is significant amount of crystalline regions in the system. No
intermediate hexatic phase emerged, which is different from
the 2D melting process for colloidal systems. In later frames
large voids begin to form in the samples, leading to the rise of

antihyperuniformity of the structures. By constructing a min-
imalist structural model for the samples in the early frames,
we were able to demonstrate that the experimental samples
can be essentially viewed as perturbed honeycomb crystals
with small correlated displacements and double chalcogen va-
cancies. Moreover, the correlated displacements alone, which
is the result of various uncontrollable experimental noises
and perturbations that one should usually expect when ac-
quiring STEM images of atomic-scale 2D materials, largely
degrade hyperuniformity of the system, and low concentration
of vacancies, when coupled with correlated displacements,
basically destroy (approximate) hyperuniformity.

We note that here we primarily studied the effect of double
chalcogen vacancies and correlated displacements on the den-
sity fluctuations of defected TMDCs. However, if other more
complex types of defects such as trefoil defects can be intro-
duced into experimental samples of TMDCs in a controllable
manner, in principle, we can employ similar procedures to
investigate the effect of those defects. Also, it is noteworthy
that while chalcogen vacancies are dominant in the projected
structures of certain samples of TMDCs, such as those in
the early frames of the current work, SW defects are preva-
lent in graphenelike 2D materials. In the future it would be
interesting to look at how SW defects, when coupled with
other factors, affect structural features and physical proper-
ties of real graphenelike materials in experiments. Previously,
it has been demonstrated [51] that the introduction of SW
defects and local structural relaxation alone preserves hype-
runiformity of honeycomb lattices while the disorder of the
structure increases, and is accompanied by the emergence of
exotic physical properties. It is important to note that while
a single experimental realization of amorphous graphene was
previously found to be hyperuniform [51], even the samples of
TMDCs in the very early frames in the current work are found
to be only nearly (or approximately) hyperuniform. More
generally, we introduce a variety of theoretical machinery
from soft-matter physics to study the structural evolution of
experimental samples of atomic-scale 2D materials, and these
techniques can be readily adapted and applied to other ordered
and disordered 2D materials. The structural studies of 2D
materials in this paper and related works will strengthen our
fundamental understanding of the physics underlying these
materials, and serve as the basis for future functional materials
design.
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