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ABSTRACT

Low-symmetry 2D materials—such as ReS2 and ReSe2 monolayers, black phosphorus monolayers, group-IV monochalcogenide monolayers,
borophene, among others—have more complex atomistic structures than the honeycomb lattices of graphene, hexagonal boron nitride, and
transition metal dichalcogenides. The reduced symmetries of these emerging materials give rise to inhomogeneous electron, optical, valley,
and spin responses, as well as entirely new properties such as ferroelasticity, ferroelectricity, magnetism, spin-wave phenomena, large nonlin-
ear optical properties, photogalvanic effects, and superconductivity. Novel electronic topological properties, nonlinear elastic properties, and
structural phase transformations can also take place due to low symmetry. The “Beyond Graphene: Low-Symmetry and Anisotropic 2D
Materials” Special Topic was assembled to highlight recent experimental and theoretical research on these emerging materials.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0030751

I. INTRODUCTION

Graphene,1–3 hexagonal boron nitride monolayers,4,5 and
transition-metal dichalcogenide monolayers (TMDCs) with a 2H
symmetry (2H-TMDCs)6 are all well-established two-dimensional
(2D) materials. Graphene displays a sixfold rotational symmetry and
also has three mirror planes, while hBN and hexagonal 2H-TMDCs
have a sixfold roto-inversion symmetry with two mirror planes. The
physical properties of these materials have been studied at length
(see, e.g., Refs. 7–9). Along these lines, and appearing in the “Beyond
Graphene: Low-Symmetry and Anisotropic 2D Materials” Special
Topic, Yamasue and Cho use scanning nonlinear dielectric
microscopy to visualize unintentional carrier doping of few-layer
Nb-doped MoS2.

10 They show that atomically thin layers exhibit a
p- to n-type transition as the thickness decreases. This sensitive
technique is applicable to arbitrary two-dimensional materials, and it
will advance understanding of and the ability to predict device
characteristics even at an early stage of the fabrication process.

But two-dimensional structural anisotropy implies that a given
material displays different physical properties when probed along
different spatial directions, and lowering the symmetry of graphene

and of other two-dimensional materials by the application of strain
leads to remarkable effects, not available in the highly symmetric
phase. For example, graphene develops local gauge fields whereby
electrons behave as if under an external magnetic field,11–13 and its
spin–orbit coupling strength can also be tuned by curvature.14

Uniaxial strain, in turn, induces a piezoelectric response in binary
materials such as hexagonal boron nitride15,16 and 2H-TMDCs.15,17

Local strain has also been proposed to tune the electronic bandgap
in 2D semiconductors.18 Another striking effect from a lowered
local symmetry is the superconductivity observed in angularly mis-
matched (moiré) graphene bilayers.19

While previous examples point to an engineered anisotropy,
new 2D materials with a spontaneous, intrinsic lower symmetry are
being predicted and/or experimentally discovered.20–25 Their struc-
tural anisotropy influences all possible (electric, magnetic, optical,
or mechanical) material responses, and the Special Topic “Beyond
Graphene: Low-Symmetry and Anisotropic 2D Materials” in the
Journal of Applied Physics has been assembled to showcase recent
research into a large number of 2D materials displaying an intrinsic
structural anisotropy. As shown by the breadth of submissions,

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 140401 (2020); doi: 10.1063/5.0030751 128, 140401-1

Published under license by AIP Publishing.

https://doi.org/10.1063/5.0030751
https://doi.org/10.1063/5.0030751
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0030751
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0030751&domain=pdf&date_stamp=2020-10-14
http://orcid.org/0000-0002-4301-3317
http://orcid.org/0000-0003-2824-1386
mailto:sbarraza@uark.edu
https://doi.org/10.1063/5.0030751
https://aip.scitation.org/journal/jap


anisotropic 2D materials represent an exciting and extremely active
avenue of research in physics, chemistry, and engineering.

II. LAYERED AND 2D MATERIALS WITH AN IN-PLANE
INTRINSIC STRUCTURAL ANISOTROPY

A. Transition metal dichalcogenides in the
T and T0 phases

Metal atoms sit at prismatic positions in 2H-TMDCs, but they
occupy the octahedral positions between two chalcogen layers in the
trigonal (T) phase. Representing an early demonstration of perma-
nent structural phase transitions onto a crystalline structure with a
lower symmetry, a triclinic (T) phase was created at the surface of
TMDC tantalum diselenide back in the mid-1990s.26,27 TMDCs with
trigonal symmetry have been shown to host superconductivity,28

charge density waves,29 quantum spin Hall semimetal behavior,30–34

and ferroelectricity.34,35

Reporting their results in the “Beyond Graphene” Special
Topic, Saha et al. undertook a systematic study of pressure induced
lattice expansion and phonon softening in layered ReS2, a TMDC
with a trigonal structure. The techniques employed include x-ray
diffraction and Raman spectroscopy. They observed all the eighteen
active Raman modes in their experimental results under standard
temperature and pressure conditions, and ascertained an iso-
structural transition onto the 1T0 phase (which is still trigonal but
features an even more reduced symmetry) taking place above
6.1 GPa. The 1T0 phase remained stable up to a pressure of 42 GPa.
The softening of Raman modes was assigned to vibrational modes
predominantly created by rhenium atoms.36

In addition, the scanning tunneling microscopy/spectroscopy
work by Plumadore et al. showcases the properties of a
graphene=ReS2 heterojunction, in which novel properties become
enabled by a combination of proximity effects and moiré pat-
terns.37 They observe a striped superpattern created by interlayer
interactions between graphene’s hexagonal structure and the tri-
clinic, low in-plane symmetry of ReS2. They compared their experi-
mental results with a theoretical model that estimates the shape
and angle dependence of the moiré pattern between graphene and
ReS2. Their results shed light on the complex interface phenomena
between van der Waals materials with different lattice symmetries.

Kipczak et al. studied the photoluminescence (PL) and Raman
scattering properties of ultrathin ReSe2—whose thicknesses ranged
from nine to one monolayer—at 5 K and at room temperature,38

paving the way for the identification of few-layer ReSe2 samples by
optical means. The PL spectra of ReSe2 layers display two well-resolved
emission lines, which blue shift by about 120meV when the layer
thickness decreases from nine monolayers to a monolayer, confirming
a direct optical transition. More specifically, the two phonon modes of
intralayer vibrations observed in Raman scattering spectra at about
120 cm�1 exhibit an opposite evolution as a function of layer thick-
ness. Their energy difference can serve as a convenient and reliable
tool to determine the thickness of ReSe2 flakes in the few-layer limit.38

B. Ultrathin black phosphorus (including monolayers)

Black phosphorus (BP) is another layered material with
in-plane anisotropy.8,39–42 Phosphorus belongs to the nitrogen

group, which is located to the right of the carbon group in the peri-
odic table of elements. Phosphorus has five valence electrons, while
carbon has four. As it turns out, a black phosphorus monolayer
and graphene are both threefold coordinated, which means that
they form three strong chemical bonds. In the case of graphene, the
remaining (π) electron hovers out of plane. But a lone pair ensues
in black phosphorus, leading to an out-of-plane buckling of the
atoms in its unit cell, which turns rectangular and contains four
atoms. This difference in the chemistry of carbon and phosphorus
leads to a large number of anisotropic properties (elastic, electronic,
and optical) observed on this material.8,43,44

Publishing their results in the “Beyond Graphene” Special
Topic, Doha et al. created an anti-reflection cavity that optimizes
absorption in a BP layer, which was characterized using scanning
photocurrent microscopy. They also modeled the devices by
solving Maxwell’s equations and the drift–diffusion equation to
obtain the optical absorption and photocurrent density in response
to pulsed laser excitation. They observed a strong absorption of
36% at 780 nm, which suggests a promising outlook for the THz
performance of these devices.45 Additionally, the computational
work by Sibari et al. explores the relation among atomistic structure
and electronic properties of few-layer black phosphorene,46 while
Betancur-Ocampo et al. employed a Green’s function formalism on
a tight-binding model of a black phosphorus monolayer pnp junc-
tion, as well as a continuum description, and determine that these
junctions operate as electron waveguides.47

C. Multiferroic behavior in layered and 2D materials
with low symmetry

Layered ferroelectrics—such as In2Se3,
48 CuInP2S6,

49

BA2PbCl4,
50 1T0-MoTe2,

35 and 1T0-WTe2
34—provide unprece-

dented freedom for the design and fabrication of functional
(van der Waals) heterostructures. This Special Issue features four
works in a subset of these materials, namely, ferroelectric and
ferroelastic group-IV transition monochalcogenide monolayers
(MX, with M being Ge, Sn, or Pb, while X could be S, Se, or Te).43,51

MX monolayers are a family of novel two-dimensional (2D) materi-
als whose atomistic structures closely resemble the black phosphorus
lattice. Most MX monolayers exhibit a broken inversion symmetry
and are ferroelectric with a reversible in-plane electric polarization.
MX monolayers are promising materials for applications in non-
linear optics, photovoltaics, spintronics, and valleytronics.

The “Beyond Graphene” Special Topic features a Perspective
Article by Chang and Parkin, in which a detailed exposition of the
experimental creation and characterization of MX monolayers is
provided.52 Due to their relatively large exfoliation energy, the crea-
tion of MX monolayers is not an easy endeavor, which hinders the
integration of these materials into the fast-developing field of 2D
material heterostructures. They review recent developments in
experimental routes to the creation of these materials, including
molecular beam epitaxy and two-step etching methods. Other
approaches that could be used to prepare MX monolayers, such as
liquid phase exfoliation and solution-phase synthesis, were dis-
cussed as well. Quantitative comparisons between the material
properties observed were also presented.52
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In turn, Gomes and Carvalho provide a Tutorial of the elec-
tronic and optical properties of 2D group-IV monochalcogenides,
including predictions from first-principles DFT calculations, and
available experimental observations.53 They discuss the variation of
the bandgap from the bulk down to the monolayer, and the respec-
tive band structures, which are characterized by multiple valence
and conduction band valleys, making these materials suitable for a
variety of applications, including valleytronics. They also discuss
the emergence of spin–orbit splitting, piezoelectricity, and ferro-
electricity as a result of the polar character of the monolayers.
Current predictions of carrier mobilities in monolayers and their
potential application as thermoelectric materials were discussed as
well. Ferroelectric and ferroelastic materials have thermally accessi-
ble elastic energy barriers separating degenerate structural ground
states. Du et al. studied the effect of charge doping on the elastic
energy barrier created by a Pnm21 ! P4/nmm two-dimensional
structural transformation of a black phosphorus monolayer and
nine ferroelectric/ferroelastic group-IV monochalcogenide mono-
layers. Group-IV monochalcogenide monolayers show a tunable
elastic energy barrier for small amounts of doping: a decrease
(increase) in the energy barrier can be engineered under a modest
hole (electron) doping of no more than one tenth of an electron or
a hole per atom. These results provide further guidance concerning
a possible tunability of the ferroelectric-to-paraelectric transition
temperature of these compounds by charge doping.54 Lastly, Seixas
employed first-principles techniques to study the structural,
electronic, and vibrational properties of 15 group-IV monochalco-
genide monolayers based on Janus substitution. These Janus mate-
rials are potential candidates for similar applications but with
additionally broken symmetry that can enrich their electronic and
optical properties.55

D. Borophene

In the “Beyond Graphene” Special Topic, Sandoval-Santana
et al. address the dynamics of charge carriers in borophene with an
Pmmn symmetry obeying an anisotropic Dirac Hamiltonian,
subjected to illumination by linearly polarized light of arbitrary
intensity. To this end, they develop analytical methods, including a
set of unitary transformations that enable the reduction of the
matrix-differential equation into a scalar differential equation, the
Floquet theorem, and a Fourier spectral decomposition. They show
that the quasi-energy spectrum develops an anisotropic structure in
the intense field regime.56

E. Silicene, silicane, germanene, and germanane

A number of 2D materials—such as silicene and germanene, as
well as their hydrogenated silicane and germanane counterparts—
lack an out-of-plane inversion symmetry. The “Beyond Graphene”
Special Topic features work by Araidai et al., in which hydrogen
desorption from silicane (SiH) and germanane (GeH) is investigated
by first-principles calculations and experiment. Their results indicate
that SiH and GeH monolayers could become precursors of silicene
and germanene monolayers.57

III. ADDITIONAL ANISOTROPIC LAYERED AND 2D
MATERIALS IN THE HORIZON

Displaying the sheer vitality of this research field, Vannucci
et al.58 report a high-throughput search of anisotropic two-
dimensional materials from the C2DB database,20 which contains
in excess of 1000 entries. They give special attention to the ternary
orthorhombic compound prototype ABC-59-ab class, which com-
bines three different atomic species in a low-symmetry structure
leading to strongly anisotropic properties, including magnetism.
Excitingly, one of such materials (CrSBr) has been recently isolated
down to monolayers.59

In turn, Liu et al. propose a layered multiferroic (MoCr2S6) by
alloying chromium into the ferroelectric 1T phase of the MoS2
matrix. First-principles calculations disclose that a spontaneous
symmetry breaking, depending on the Mo atom displacement,
leads to a robust ferroelectricity, which coexists with a ferromag-
netic order originated from two neighboring chromium atoms.
Their findings shed new light on the fundamental understanding of
multiferroics and display promising applications in spintronics and
multistate data storage.60

Last but not least, an authoritative Tutorial contributed by
May et al.61 covers the technical aspects associated with the growth
of layered (anisotropic) materials via melt-based techniques, vapor
transport growth, and the characterization of crystal quality with
an emphasis on structural and chemical homogeneities. Important
for the development of this field, details on growth and characteri-
zation of many specific compounds were provided. The Tutorial’s
goal is to motivate more researchers to grow van der Waals crystals.

IV. CONCLUSIONS

In conclusion, this Special Issue showcases recent research in
the rapidly evolving area of two-dimensional materials with low
symmetry. The contributed works feature predictions of novel
phases and detailed experimental discussions of growth and charac-
terization of these phases—including the creation of van der Waals
heterostructures. The variety of these published contributions is a
testament to the vitality of this field.
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